• 제목/요약/키워드: neural Network

Search Result 11,720, Processing Time 0.033 seconds

Prediction of Music Generation on Time Series Using Bi-LSTM Model (Bi-LSTM 모델을 이용한 음악 생성 시계열 예측)

  • Kwangjin, Kim;Chilwoo, Lee
    • Smart Media Journal
    • /
    • v.11 no.10
    • /
    • pp.65-75
    • /
    • 2022
  • Deep learning is used as a creative tool that could overcome the limitations of existing analysis models and generate various types of results such as text, image, and music. In this paper, we propose a method necessary to preprocess audio data using the Niko's MIDI Pack sound source file as a data set and to generate music using Bi-LSTM. Based on the generated root note, the hidden layers are composed of multi-layers to create a new note suitable for the musical composition, and an attention mechanism is applied to the output gate of the decoder to apply the weight of the factors that affect the data input from the encoder. Setting variables such as loss function and optimization method are applied as parameters for improving the LSTM model. The proposed model is a multi-channel Bi-LSTM with attention that applies notes pitch generated from separating treble clef and bass clef, length of notes, rests, length of rests, and chords to improve the efficiency and prediction of MIDI deep learning process. The results of the learning generate a sound that matches the development of music scale distinct from noise, and we are aiming to contribute to generating a harmonistic stable music.

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning (딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측)

  • Minsu, Kim;Sanghyun, Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.375-380
    • /
    • 2022
  • High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

Stress Constraint Topology Optimization using Backpropagation Method in Design Sensitivity Analysis (설계민감도 해석에서 역전파 방법을 사용한 응력제한조건 위상최적설계)

  • Min-Geun, Kim;Seok-Chan, Kim;Jaeseung, Kim;Jai-Kyung, Lee;Geun-Ho, Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.367-374
    • /
    • 2022
  • This papter presents the use of the automatic differential method based on the backpropagation method to obtain the design sensitivity and its application to topology optimization considering the stress constraints. Solving topology optimization problems with stress constraints is difficult owing to singularities, the local nature of stress constraints, and nonlinearity with respect to design variables. To solve the singularity problem, the stress relaxation technique is used, and p-norm for stress constraints is applied instead of local stresses for global stress measures. To overcome the nonlinearity of the design variables in stress constraint problems, it is important to analytically obtain the exact design sensitivity. In conventional topology optimization, design sensitivity is obtained efficiently and accurately using the adjoint variable method; however, obtaining the design sensitivity analytically and additionally solving the adjoint equation is difficult. To address this problem, the design sensitivity is obtained using a backpropagation technique that is used to determine optimal weights and biases in the artificial neural network, and it is applied to the topology optimization with the stress constraints. The backpropagation technique is used in automatic differentiation and can simplify the calculation of the design sensitivity for the objectives or constraint functions without complicated analytical derivations. In addition, the backpropagation process is more computationally efficient than solving adjoint equations in sensitivity calculations.

Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data (검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델)

  • Sungwook Jung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.387-398
    • /
    • 2023
  • The COVID-19 outbreak has significantly impacted human lifestyles and patterns. It was recommended to avoid face-to-face contact and over-crowded indoor places as much as possible as COVID-19 spreads through air, as well as through droplets or aerosols. Therefore, if a person who has contacted a COVID-19 patient or was at the place where the COVID-19 patient occurred is concerned that he/she may have been infected with COVID-19, it can be fully expected that he/she will search for COVID-19 symptoms on Google. In this study, an exploratory data analysis using deep learning models(DNN & LSTM) was conducted to see if we could predict the number of confirmed COVID-19 cases by summoning Google Trends, which played a major role in surveillance and management of influenza, again and combining it with data on the number of confirmed COVID-19 cases. In particular, search term frequency data used in this study are available publicly and do not invade privacy. When the deep neural network model was applied, Seoul (9.6 million) with the largest population in South Korea and Busan (3.4 million) with the second largest population recorded lower error rates when forecasting including search term frequency data. These analysis results demonstrate that search term frequency data plays an important role in cities with a population above a certain size. We also hope that these predictions can be used as evidentiary materials to decide policies, such as the deregulation or implementation of stronger preventive measures.

Assessment of the Object Detection Ability of Interproximal Caries on Primary Teeth in Periapical Radiographs Using Deep Learning Algorithms (유치의 치근단 방사선 사진에서 딥 러닝 알고리즘을 이용한 모델의 인접면 우식증 객체 탐지 능력의 평가)

  • Hongju Jeon;Seonmi Kim;Namki Choi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.3
    • /
    • pp.263-276
    • /
    • 2023
  • The purpose of this study was to evaluate the performance of a model using You Only Look Once (YOLO) for object detection of proximal caries in periapical radiographs of children. A total of 2016 periapical radiographs in primary dentition were selected from the M6 database as a learning material group, of which 1143 were labeled as proximal caries by an experienced dentist using an annotation tool. After converting the annotations into a training dataset, YOLO was trained on the dataset using a single convolutional neural network (CNN) model. Accuracy, recall, specificity, precision, negative predictive value (NPV), F1-score, Precision-Recall curve, and AP (area under curve) were calculated for evaluation of the object detection model's performance in the 187 test datasets. The results showed that the CNN-based object detection model performed well in detecting proximal caries, with a diagnostic accuracy of 0.95, a recall of 0.94, a specificity of 0.97, a precision of 0.82, a NPV of 0.96, and an F1-score of 0.81. The AP was 0.83. This model could be a valuable tool for dentists in detecting carious lesions in periapical radiographs.

Design and Implementation of Real-time Digital Twin in Heterogeneous Robots using OPC UA (OPC UA를 활용한 이기종 로봇의 실시간 디지털 트윈 설계 및 구현)

  • Jeehyeong Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.189-196
    • /
    • 2023
  • As the manufacturing paradigm shifts, various collaborative robots are creating new markets. Demand for collaborative robots is increasing in all industries for the purpose of easy operation, productivity improvement, and replacement of manpower who do simple tasks compared to existing industrial robots. However, accidents frequently occur during work caused by collaborative robots in industrial sites, threatening the safety of workers. In order to construct an industrial site through robots in a human-centered environment, the safety of workers must be guaranteed, and there is a need to develop a collaborative robot guard system that provides reliable communication without the possibility of dispatch. It is necessary to double prevent accidents that occur within the working radius of cobots and reduce the risk of safety accidents through sensors and computer vision. We build a system based on OPC UA, an international protocol for communication with various industrial equipment, and propose a collaborative robot guard system through image analysis using ultrasonic sensors and CNN (Convolution Neural Network). The proposed system evaluates the possibility of robot control in an unsafe situation for a worker.

Development of Stability Evaluation Algorithm for C.I.P. Retaining Walls During Excavation (가시설 벽체(C.I.P.)의 굴착중 안정성 평가 알고리즘 개발)

  • Lee, Dong-Gun;Yu, Jeong-Yeon;Choi, Ji-Yeol;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.13-24
    • /
    • 2023
  • To investigate the stability of temporary retaining walls during excavation, it is essential to develop reverse analysis technologies capable of precisely evaluating the properties of the ground and a learning model that can assess stability by analyzing real-time data. In this study, we targeted excavation sites where the C.I.P method was applied. We developed a Deep Neural Network (DNN) model capable of evaluating the stability of the retaining wall, and estimated the physical properties of the ground being excavated using a Differential Evolution Algorithm. We performed reverse analysis on a model composed of a two-layer ground for the applicability analysis of the Differential Evolution Algorithm. The results from this analysis allowed us to predict the properties of the ground, such as the elastic modulus, cohesion, and internal friction angle, with an accuracy of 97%. We analyzed 30,000 cases to construct the training data for the DNN model. We proposed stability evaluation grades for each assessment factor, including anchor axial force, uneven subsidence, wall displacement, and structural stability of the wall, and trained the data based on these factors. The application analysis of the trained DNN model showed that the model could predict the stability of the retaining wall with an average accuracy of over 94%, considering factors such as the axial force of the anchor, uneven subsidence, displacement of the wall, and structural stability of the wall.

Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts (소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발)

  • Lee, Ju-Kyung;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.42-57
    • /
    • 2022
  • This study aims to create a basic model for classifying the activity photos that urban park users shared on social media using Deep Learning through Artificial Intelligence. Regarding the social media data, photos related to urban parks were collected through a Naver search, were collected, and used for the classification model. Based on the indicators of Naturalness, Potential Attraction, and Activity, which can be used to evaluate the characteristics of urban parks, 21 classification categories were created. Urban park photos shared on Naver were collected by category, and annotated datasets were created. A custom CNN model and a transfer learning model utilizing a CNN pre-trained on the collected photo datasets were designed and subsequently analyzed. As a result of the study, the Xception transfer learning model, which demonstrated the best performance, was selected as the urban park user activity image classification model and evaluated through several evaluation indicators. This study is meaningful in that it has built AI as an index that can evaluate the characteristics of urban parks by using user-shared photos on social media. The classification model using Deep Learning mitigates the limitations of manual classification, and it can efficiently classify large amounts of urban park photos. So, it can be said to be a useful method that can be used for the monitoring and management of city parks in the future.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.