• Title/Summary/Keyword: neural Network

Search Result 11,720, Processing Time 0.044 seconds

Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS) (LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발)

  • Park, Eun Kyu;Jung, Bam Bit;Choi, Woo Zin;Oh, Sung Kwun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.73-83
    • /
    • 2017
  • Used small household appliances have a wide variety of product types and component materials, and contain high percentage of black plastics. However, they are not being recycled efficiently as conventional sensors such as near-infrared ray (NIR), etc. are not able to detect black plastic by types. In the present study, an automatic sorting system was developed based on laser-induced breakdown spectroscopy (LIBS) to promote the recycling of waste plastics. The system we developed mainly consists of sample feeder, automatic position recognition system, LIBS device, separator and control unit. By applying laser pulse on the target sample, characteristic spectral data can be obtained and analyzed by using CCD detectors. The obtained data was then treated by using a classifier, which was developed based on artificial intelligent algorithm. The separation tests on waste plastics also were carried out by using a lab-scale automatic sorting system and the test results will be discussed. The classification rate of the radial basis neural network (RBFNNs) classifier developed in this study was about > 97%. The recognition rate of the black plastic by types with the automatic sorting system was more than 94.0% and the sorting efficiency was more than 80.0%. Automatic sorting system based on LIBS technology is in its infant stage and it has a high potential for utilization in and outside Korea due to its excellent economic efficiency.

Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction (3 방향 절환밸브의 공동현상 저감을 위한 형상최적화)

  • Lee, Myeong Gon;Lim, Cha Suk;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1123-1129
    • /
    • 2015
  • A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

Semi-supervised domain adaptation using unlabeled data for end-to-end speech recognition (라벨이 없는 데이터를 사용한 종단간 음성인식기의 준교사 방식 도메인 적응)

  • Jeong, Hyeonjae;Goo, Jahyun;Kim, Hoirin
    • Phonetics and Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.29-37
    • /
    • 2020
  • Recently, the neural network-based deep learning algorithm has dramatically improved performance compared to the classical Gaussian mixture model based hidden Markov model (GMM-HMM) automatic speech recognition (ASR) system. In addition, researches on end-to-end (E2E) speech recognition systems integrating language modeling and decoding processes have been actively conducted to better utilize the advantages of deep learning techniques. In general, E2E ASR systems consist of multiple layers of encoder-decoder structure with attention. Therefore, E2E ASR systems require data with a large amount of speech-text paired data in order to achieve good performance. Obtaining speech-text paired data requires a lot of human labor and time, and is a high barrier to building E2E ASR system. Therefore, there are previous studies that improve the performance of E2E ASR system using relatively small amount of speech-text paired data, but most studies have been conducted by using only speech-only data or text-only data. In this study, we proposed a semi-supervised training method that enables E2E ASR system to perform well in corpus in different domains by using both speech or text only data. The proposed method works effectively by adapting to different domains, showing good performance in the target domain and not degrading much in the source domain.

Implementation of Multiple Nonlinearities Control for Stable Walking of a Humanoid Robot (휴머노이드 로봇의 안정적 보행을 위한 다중 비선형 제어기 구현)

  • Kong, Jung-Shik;Kim, Jin-Geol;Lee, Bo-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This paper is concerned with the control of multiple nonlinearities included in a humanoid robot system. A humanoid robot has some problems such as the structural instability, which leads to consider the control of multiple nonlinearities caused by driver parts as well as gear reducer. Saturation and backlash are typical examples of nonlinearities in the system. The conventional algorithms of backlash control were fuzzy algorithm, disturbance observer and neural network, etc. However, it is not easy to control the system by employing only single algorithm since the system usually includes multiple nonlinearities. In this paper, a switching Pill is considered for a control of saturation and a dual feedback algorithm is proposed for a backlash control. To implement the above algorithms, the system identification is firstly performed for the minimization of the difference between the results of simulation and experiment, and then the switching Pill gains are determined using genetic algorithm with some heuristic approach. The performance of the switching Pill controller for saturation and the dual feedback for backlash control is investigated through the simulation. Finally, it is shown that the implemented control system has good results and can be applied to the real humanoid robot system ISHURO.

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Characteristic Intracelluar Response to Lidocaine And MK-801 of Hippocampal Neurons: An In Vivo Intracellular Neuron Recording Study

  • Choi, Byung-Ju;Cho, Jin-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.297-305
    • /
    • 1998
  • This study used in vivo intracellular recording in rat hippocampus to evaluate the effect of lidocaine and MK-801 on the membrane properties and the synaptic responses of individual neurons to electrical stimulation of the commissural pathway. Cells in control group typically fired in a tonic discharge mode with an average firing frequency of $2.4{\pm}0.9$ Hz. Neuron in MK-801 treated group (0.2 mg/kg, i.p.) had an average input resistance of $3.28{\pm}5.7\;M{\Omega}$ and a membrane time constant of $7.4{\pm}1.8$ ms. These neurons exhibited $2.4{\pm}0.2$ ms spike durations, which were similar to the average spike duration recorded in the neurons of the control group. Slightly less than half of these neurons were firing spontaneously with an average discharge rate of $2.4{\pm}1.1$ Hz. The average peak amplitude of the AHP following the spikes in these groups was $7.4{\pm}0.6$ mV with respect to the resting membrane potential. Cells in MK-801 and lidocaine treated group (5 mg/kg, i.c.v.) had an average input resistance of $3.45{\pm}6.0\;M{\Omega}$ and an average time constant of $8.0{\pm}1.4$ ms. The cells were firing spontaneously at an average discharge rate of $0.6{\pm}0.4$ Hz. Upon depolarization of the membrane by 0.8 nA for 400 ms, all of the tested cells exhibited accommodation of spike discharge. The most common synaptic response contained an EPSP followed by early-IPSP and late-IPSP. Analysis of the voltage dependence revealed that the early-IPSP and late-IPSP were putative $Cl^--and\;K^+-dependent$, respectively. Systemic injection of the NMDA receptor blocker, MK-801, did not block synaptic responses to the stimulation of the commissural pathway. No significant modifications of EPSP, early-IPSP, or late-IPSP components were detected in the MK-801 and/or lidocaine treated group. These results suggest that MK-801 and lidocaine manifest their CNS effects through firing pattern of hippocampal pyramidal cells and neural network pattern by changing the synaptic efficacy and cellular membrane properties.

  • PDF

Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes (국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구)

  • Choi, Jong-Yun;Hahn, Hyuk;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.169-177
    • /
    • 2020
  • In South Korea, the results of R&D in science and technology are submitted to the National Science and Technology Information Service (NTIS) in reports that have Korea national science and technology standard classification codes (K-NSCC). However, considering there are more than 2000 sub-categories, it is non-trivial to choose correct classification codes without a clear understanding of the K-NSCC. In addition, there are few cases of automatic document classification research based on the K-NSCC, and there are no training data in the public domain. To the best of our knowledge, this study is the first attempt to build a highly performing K-NSCC classification system based on NTIS report meta-information from the last five years (2013-2017). To this end, about 210 mid-level categories were selected, and we conducted preprocessing considering the characteristics of research report metadata. More specifically, we propose a convolutional neural network (CNN) technique using only task names and keywords, which are the most influential fields. The proposed model is compared with several machine learning methods (e.g., the linear support vector classifier, CNN, gated recurrent unit, etc.) that show good performance in text classification, and that have a performance advantage of 1% to 7% based on a top-three F1 score.

Generalized Sigmidal Basis Function for Improving the Learning Performance fo Multilayer Perceptrons (다층 퍼셉트론의 학습 성능 개선을 위한 일반화된 시그모이드 베이시스 함수)

  • Park, Hye-Yeong;Lee, Gwan-Yong;Lee, Il-Byeong;Byeon, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1261-1269
    • /
    • 1999
  • 다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에서 나타나는 플라토에 기인한 느린 학습 속도와 지역 극소는 실제 응용문제에 적용함에 있어서 가장 큰 문제로 지적되어왔다. 이 문제를 해결하기 위해 여러 가지 다양한 학습알고리즘들이 개발되어 왔으나, 계산의 비효율성으로 인해 실제 문제에는 적용하기 힘든 예가 많은 등, 현재까지 만족할 만한 해결책은 제시되지 못하고 있다. 본 논문에서는 다층퍼셉트론의 베이시스 함수로 사용되는 시그모이드 함수를 보다 일반화된 형태로 정의하여 사용함으로써 학습에 있어서의 플라토를 완화하고, 지역극소에 빠지는 것을 줄이는 접근방법을 소개한다. 본 방법은 기존의 변형된 가중치 수정식을 사용한 학습 속도 향상의 방법들과는 다른 접근 방법을 택함으로써 기존의 방법들과 함께 사용하는 것이 가능하다는 특징을 갖고 있다. 제안하는 방법의 성능을 확인하기 위하여 간단한 패턴 인식 문제들에의 적용 실험 및 기존의 학습 속도 향상 방법을 함께 사용하여 시계열 예측 문제에 적용한 실험을 수행하였고, 그 결과로부터 제안안 방법의 효율성을 확인할 수 있었다. Abstract A multilayer perceptron is the most well-known neural network model which has been successfully applied to various fields of application. Its slow learning caused by plateau and local minima of gradient descent learning, however, have been pointed as the biggest problems in its practical use. To solve such a problem, a number of researches on learning algorithms have been conducted, but it can be said that none of satisfying solutions have been presented so far because the problems such as computational inefficiency have still been existed in these algorithms. In this paper, we propose a new learning approach to minimize the effect of plateau and reduce the possibility of getting trapped in local minima by generalizing the sigmoidal function which is used as the basis function of a multilayer perceptron. Adapting a new approach that differs from the conventional methods with revised updating equation, the proposed method can be used together with the existing methods to improve the learning performance. We conducted some experiments to test the proposed method on simple problems of pattern recognition and a problem of time series prediction, compared our results with the results of the existing methods, and confirmed that the proposed method is efficient enough to apply to the real problems.

Data Mining Analysis of Determinants of Alcohol Problems of Youth from an Ecological Perspective (청년의 문제음주에 미치는 사회생태학적 결정요인에 관한 데이터 마이닝 분석)

  • Lee, Suk-Hyun;Moon, Sang Ho
    • Korean Journal of Social Welfare Studies
    • /
    • v.49 no.4
    • /
    • pp.65-100
    • /
    • 2018
  • Korean Youth are facing diverse problems. For-instance Korean youth are even called '7 given-up generation' which indicates that they gave up marriage, giving birth, social relationship, housing, dream and the hope. From this point, the study concludes that the influential factors of the alcohol problems of youth should be studied based on the eco social perspectives. And it adopted data-mining methods, using SAS-Enterprise Miner for the analysis, targeting 2538 youths. Specifically, the study analyzed and chose the most predictable model using decision tree analysis, artificial neural network and logistic analysis. As the result, the study found that gender, age, smoking, spouse, family-number, jobsearching and economic participation are statistically significant determinants of alcohol problems of youth. Precisely, those who are male, younger, have the spouse, have less family number, searching jobs, have more income and have the job were more prone to have the alcohol problems. Based on the result, this study proposed the addiction problems targeting youth and etc. and expect to have the contribution on implementing procedures for the alcohol problems.

Vulnerability Assessment of the Climate Change on the Water Environment of Juam Reservoir (기후변화에 따른 주암호 수환경 취약성 평가)

  • Yoon, Sung Wan;Chung, Se Woong;Park, Hyung Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.519-519
    • /
    • 2015
  • 2007년 발간된 IPCC의 4차 평가보고서에서 자연재해, 환경, 해양, 농업, 생태계, 보건 등 다양한 부분에 미치는 기후변화의 영향에 대한 과학적 근거들이 제시되면서 기후변화는 현세기 범지구적인 화두로 대두되고 있다. 또한, 기후변화에 의한 지구 온난화는 대규모의 수문순환 과정에서의 변화들과 연관되어 담수자원은 기후변화에 대단히 취약하며 미래로 갈수록 악영향을 받을 것으로 6차 기술보고서에서 제시하고 있다. 특히 우리나라는 지구온난화가 전 지구적인 평균보다 급속하게 진행될 가능성이 높기 때문에 기후변화에 대한 담수자원 취약성이 더욱 클 것으로 예상된다. 따라서 지표수에 용수의존도가 높은 우리나라의 댐 저수지를 대상으로 기후변화에 따른 수환경 변화의 정확한 분석과 취약성 평가는 필수적이다. 본 연구에서는 SRES A1B 시나리오를 적용하여 기후변화가 주암호 저수지의 수환경 변화에 미치는 영향을 분석하였다. 지역스케일의 미래 기후시나리오 생산을 위해 인공신경망(Artificial Neural Network.,ANN)기법을 적용하여 예측인자(강우, 상대습도, 최고온도, 최저온도)에 대해 강우-유출모형에 적용이 가능한 지역스케일로 통계적 상세화를 수행하였으며, 이를 유역모델에 적용하여 저수지 유입부의 유출량 및 부하량을 예측하였다. 유역 모델의 결과를 토대로 저수지 운영모델에 저수지 유입부의 유출량을 적용하여 미래 기간의 방류량을 산정하였으며, 최종적으로 저수지 모델에 유입량, 유입부하량 및 방류량을 적용하여 저수지 내 오염 및 영양물질 순환 및 분포 예측을 통해서 기후변화가 저수지 수환경에 미치는 영향을 평가하였다. 기후변화 시나리오에 따른 상세기 후전망을 위해서 기후인자의 미래분석 기간은 (I)단계 구간(2011~2040년), (II)단계 구간(2041~2070년), (III) 단계 구간(2071~2100년)의 3개 구간으로 설정하여 수행하였으며, Baseline인 1991~2010년까지의 실측값과 모의 값을 비교하여 검증하였다. 강우량의 경우 Baseline 대비 미래로 갈수록 증가하는 것으로 전망되었으며, 2011년 대비 2100년에서 연강수량 6.4% 증가한 반면, 일최대강수량이 7.0% 증가하는 것으로 나타나 미래로 갈수록 집중호우의 발생가능성이 커질 것으로 예측되었다. 유역의 수문 수질변화 전망도 강수량 증가의 영향으로 주암댐으로 유입하는 총 유량이 Baseline 대비 증가 하였으며, 유사량 및 오염부하량도 증가하는 것으로 나타났다. 저수지 수환경 변화 예측결과 유입량이 증가함에 따라서 연평균 체류시간이 감소하였으며, 기온 및 유입수온 상승의 영향으로 (I)단계 구간대비 미래로 갈수록 상층 및 심층의 수온이 상승하는 것으로 나타났다. 연중 수온성층기간 역시 증가하는 것으로 나타났으며, 남조류는 (I)단계 구간 대비 (III)단계 구간으로 갈수록 출현시기가 빨라지며 농도 역시 증가하였다. 또한 풍수년, 평수년에 비해 갈수년에 남조류의 연평균농도 상승폭과 최고농도가 크게 나타나 미래로 갈수록 댐 유입량이 적은 해에 남조류로 인한 피해 발생 가능성이 높아질 것으로 예상된다.

  • PDF