통합 서비스망은 실시간 응용들에게 고품질의 서비스를 제공하기 위해서 종단간 지연의 한계를 보장해야 한다. 이러한 보장 서비스는 라우터의 출력 포트에 설치되는 실시간 스케줄러에 의해서 제공된다. 그러나 현재까지 연구된 스케줄링 알고리즘들은 네트워크 유용도 혹은 확장성(scalability)에 문제점을 갖고 있다. 여기서 네트워크 유용도는 얼마나 많은 실시간 세션들을 승인할 수 있는 지를 의미한다. 본 논문은 서비스 곡선 알고리즘에서 높은 네트러크 유용도와 확장성 양쪽을 모두 성취할 수 있는 서비스 곡선 할당 방식을 제안한다. 서비스 곡선 알고리즘의 가장 큰 특징은 서비스 곡선 할당 방식에 따라서 네트워크 유용도와 확장성 모두가 결정된다는 점이다. 일상적인 믿음과 반대로, 데드라인을 계산할 때 전체 서비스 곡선이 아닌 일부만이 사용됨을 증명한다. 이 사실로부터 우리는 데드라인을 계산하는 비용이 상수 시간인 서비스 곡선 할당 방식을 제안한다. 또한, 수치결과를 통해서 제안하는 방식이 mutirate 알고리즘을 포함한 GPS 알고리즘들보다 더 높은 네트워크 유용도를 성취함을 보인다. 우리가 아는 한, 서비스 곡선 알고리즘이 제안하는 서비스 곡선 할당 방식을 채용하면 동일한 확장성을 갖는 스케줄링 알고리즘들 중에 가장 놀은 네트워크 유용도를 성취한다.
본 논문은 WDM(Wavelength Division Multiplexing) 망에서 서비스 품질에 따른 제약조건을 고려하였을 때 장애 복구에 적용될 수 있도록 개선된 p-cycle(preconfigured protection cycle) 기법을 제안한다. 기존의 p-cycle에서는 양방향으로 동일한 대역폭을 가지는 연결만을 고려하기 때문에 단방향 멀티캐스팅이나 양방향으로 서로 다른 대역폭을 사용하는 경우에는 적용하기 어려운 문제점이 있다. 또한 대체 경로의 서비스 품질은 고려하지 않으므로 장애 발생 시 대체 경로에서 서비스 품질을 만족시킬 수 없을 수 있다는 문제점이 있다. 본 논문에서는 단방향 멀티캐스팅이나 양방향 비대칭 대역폭을 사용하는 광대역 멀티미디어 통신에서 사용되는 단방향 연결의 장애복구를 효율적으로 구현할 수 있도록 P-cycle 기법을 개선하였다. 또한 장애복구를 위한 대체 경로의 P-Cycle에서 서비스 품질을 보장할 수 있도록 하기 위해서 P-cycle 선정을 위한 새로운 절차를 제안한다. 단방향 연결 개념을 사용한 P-cycle을 적용함으로서 비대칭적인 대역폭을 사용하는 통신환경에서 장애 복구를 위해 요구되는 대역폭을 줄일 수 있었으며, 제안된 p-cycle 선정 절차에 의해 구성된 대체 경로가 서비스 품질을 보장할 수 있는지의 여부를 시험하기 위해서 미국 시험망에 적용하고 그 결과를 분석하였다.
무선 센서 네트워크에서 센서노드의 지리적인 위치를 요구하는 응용들이 현저하게 증가하고 있다. 최근 다양한 위치 측위 알고리즘들이 제안 되었지만, 대부분의 알고리즘은 특정한 하드웨어로 얻은 RSSI와 LQI 측정치를 기반으로 위치를 추정하고 있다. 본 논문에서는 이러한 추가적인 정보를 이용하지 않아도 기존 연구와 근사한 측정 결과를 얻을 수 있는 '가중 다중 링을 이용한 측위' 알고리즘 WMRL(Weighted Multiple Rings Localization)을 제안한다. 고정노드(anchor nodes)들이 배치되어 있으며, 각 고정노드는 주기적으로 서로 다른 신호 세기의 비콘(beacon) 신호를 송출한다고 가정한다. 그러면, 비콘 신호는 공간상에 링을 형성하게 되며, 파워 레벨의 세기에 따라 다수의 동심원을 형성하는 동시에 링 간에 교차영역을 생성한다. 본 논문에서는 효율적인 측위 계산을 위해 각 링의 거리 비율에 따른 가중치 모텔을 제안한다. 또한, 센서노드는 수신이 가능한 고정노드로부터 가장 가까운 링을 발견할 수 있으며, 이를 활용하여 센서노드는 자신의 위치를 고정노드 좌표의 가중 합으로 구한다. 제안된 알고리즘은 분산적으로 위치를 계산할 수 있으며, 추가적인 하드웨어를 요구하지 않는다. 추가적으로, 비 신뢰적인 RSSI 및 LQI에 의존하지 않고, 각 링 간의 거리 비율로 측위가 가능한 것이 특정이다. 그럼에도 불구하고, WMRL은 시뮬레이션 결과 2개의 링, 즉 2개의 파워 레벨로 구성하였을 경우에는 기존의 centroid 방식보다 평균 측위 에러가 2배 감소하였고, 3개의 링을 구성하였을 경우에는 WCL(Weighted Centroid Localization)과 대등한 측위 결과를 보였다.
최근 광 대역 통합 네트워크에서 고품질의 멀티미디어 서비스에 대한 사용자 요구가 증가하고 있다. 또한, 사용자 단말기기의 다양화 및 대화면 디스플레이 장치의 보급으로 다양한 형태의 서비스 품질(QoS)에 대한 요구도 증가하고 있다. 이를 위해 네트워크 관점에서 동적 큐 관리 알고리즘과 같은 인터넷 성능을 개선하여 서비스 품질을 보장하는 연구와 종단 관점에서 미디어의 품질을 보장하기 위한 SVC(Scalable Video Coding) 부호화 기법에 대한 연구가 활발히 진행 중에 있다. 그러나, 기존 동적 큐 관리 알고리즘은 비디오 부호화 기술의 본질적인 특성에 대하여 고려하지 못하여 서비스 품질을 보장하는 못하는 문제점을 가지고 있다. 본 논문에서는 현재 혼잡제어 알고리즘의 문제점을 개선하기 위해 NAL (Network Abstract Layer)의 헤더 내 TID (Temporal_ID)를 통해 SVC 부호화 기술의 특성을 파악하여 프레임간 의존성이 낮은 프레임의 패킷에 대하여 차등적으로 패킷을 폐기하는 75-AQM (Temporal Scalability - Active Queue Management) 알고리즘을 제안하였다. 제안한 75-AQM 알고리즘은 혼잡상황 시 차등적인 패킷 폐기를 통해 SVC 부호화 기법을 이용하는 스트리밍 서비스에 대하여 안정적인 비디오 복호화를 통해 멀티미디어 서비스 품질을 보장하였다.
무선 네트워크의 물리계층에서 이용하는 무선 전송매체는 전송 범위내의 모든 이웃 노드들이 동시에 전송 신호를 수신할 수 있는 브로드캐스트 전파 특성을 갖는다. 기존의 비동기 무선 MAC 프로토콜들은 신뢰성 있는 브로드캐스트에 대한 구제적인 해결 방안을 고려하지 않고 있다. 무지향성 브로드캐스트가 과다한 채널 경쟁과 충돌을 발생시켜 네트워크의 성능 저하를 야기하기 때문이다. 본 논문에서는 링크계층에서 지향성 안테나를 이용하여 지향성 브로드캐스트를 지원하는 MDB(MAC protocol for Directional Broadcast) 프로토콜을 제안한다. MDB 프로토콜은 DAST(Directional Antennas Statement Table) 정보와 4-way 핸드셰이크에 의한 D-MACA(Directional Multiple Access Collision Avoidance) 구조를 기반으로 Hidden Terminal 문제와 Deafness 문제를 해결한다. 성능 평가를 위해 MDB 프로토콜과 기존의 IEEE 802.11 DCF(Distributed Coordination Function) 프로토콜[9]와 참고문헌 [3]의 프로토콜 2를 비교대상으로 브로드캐스트로 인한 충돌 발생률과 브로드캐스트 완료율 관점에서 성능을 분석하였다. 성능 분석 결과는 네트워크 밀도가 높을수록 MDB 프로토콜이 기존의 프로토콜보다 높은 브로드캐스트 완료율과 낮은 충돌 발생률을 보였다.
IEEE 802.11 Wireless LAN 네트워크 상에서 동작하는 단말(Mobile Station)의 끊김 없는(Seamless) 이동성을 제공해 주기 위해서는 현재까지 연구된 핸드오버 기능 및 구조에 대한 연구와 함께 보다 다양해진 네트워크 환경과 다양한 단말들의 특성 등을 고려한 종합적인 핸드오버 기능에 대한 연구가 필요하다. 특히 새로운 AP를 찾기 위한 채널 스캐닝 과정이 핸드오버 지연시간의 대부분을 차지하고, 이는 WLAN 환경에서 Real-time Multimedia 서비스를 위한 끊김 없는 핸드오버를 하기에 가장 큰 장애요인으로 꼽힌다. 본 논문에서는 IEEE 802.11 WLAN 네트워크에서 단말의 끊김 없는 핸드오버를 제공해 주기 위하여 필요한 기능들을 도출하고, 다양한 네트워크 환경에서 채널 스캐닝 지연시간을 줄이기 위해서 핸드오버가 필요한 단말들이 선택적 채널 스캐닝을 할 수 있는 새로운 스캐닝 기법을 제안한다. 단말은 스캐닝 기법에 따라 이웃 AP들에 대해 사전 채널 스캐닝을 수행하여 각각의 AP가 현재 사용하고 있는 채널 정보를 인지하고, 이후 단말이 핸드오버가 임박했을 때 미리 정해진 스캐닝 그룹과 순서에 따라 선택된 채널에 대해서만 스캐닝을 수행하여, 불필요한 전체 채널 스캐닝을 최소화 함으로서 최적의 AP를 빠른 시간 내에 찾을 수 있도록 제안한다. 또한 단말의 이동에 따라 핸드오버가 필요한 상황이지만 RSSI 값이 Scan Trigger Value 보다 커서 핸드오버를 못하는 현상을 방지하고자, 단말에서 Scan Trigger Value와 Handover Threshold Value를 입력할 수 있는 방법을 제안하고자한다.
본 논문에서는 IPTV 표준화 기구인 ITU-T IPTV FG(Focus Group)에서 제안한 IPTV 참조 모델을 기반으로 라이브 IPTV 방송이 고객에게 전달되는 과정을 네트워크 관점에서 분석하여 각 네트워크 특성에 맞는 멀티캐스트 기법을 적용한 혼합형 오버레이 멀티캐스트 네트워크인 ONLIS(Overlay Multicast Network for Live IPTV Service)를 제안한다. IPTV 방송사 네트워크와 네트워크 서비스 제공자의 백본 네트워크에는 안정적인 스트립 분산과 효율적인 트래픽 관리를 위해 전용 서버 기반의 오버레이 멀티캐스트 네트워크를 적용하고, 종단 사용자가 네트워크에 접속하는 구간인 액세스 네트워크 구간은 P2P 방식 오버레이 네트워크를 구성하여 서버 부하 절감효과를 얻을 수 있다. P2P 기술을 이용하여 라이브 스트림을 전송할 때 해결해야 할 가장 중요한 과제는 전송 지연 단축과 전송 스트림 품질 향상이다. 이 문제를 해결하기 위해 본 논문에서는 P2P 관련 기술을 제시한다. 제안 기술은 서버 기반과 P2P 기반의 혼합형 오버레이 멀티캐스트 네트워크의 장점을 활용한 분산 스트리밍 P2P 트리(DSPT: Distributed Streaming P2P Tree)를 이용한 전송 기법이다. 제안하는 P2P 전송 방식은 전적으로 피어에 스트림 전송을 의존하지 않고 액세스 네트워크의 전용 오버레이 멀티캐스트 전송 장비인 릴레이(Relay)와 협조하는 방식으로, 피어에 장애가 발생하면 즉시 릴레이로부터 스트림 수신을 재개하여 끊김 없는 스트림 서비스를 받을 수 있다. 또한, 하나의 스트림을 여러 서버와 경로를 통해 전송할 수 있는 분산 스트리밍 기법을 적용하여 공급 피어의 전송 대역폭 허용하는 범위 내에서 스트림을 전송하고, 나머지는 로컬 액세스 네트워크의 오버레이 전송 장비로부터 수신하여 P2P 네트워크의 전송 효율성을 향상하였다.
최근 무선 랜은 SOHO (Small Office Home Office) 및 Hot Spot과 같은 환경에서 공간의 제약에 구애받지 않고, 인터넷에 접속할 수 있는 기술로서 사용자의 요구가 크게 증가하였다. 하지만, 무선 랜 환경에서의 통신은 유선망과 달리 불안정한 무선 채널의 특성으로 인해 연집적인 패킷 손실이 발생하여 통신상의 제약이 많은 특징을 가진다. 연집적인 패킷 손실은 AP(Access Point) 와 무선 단말의 거리가 증가하거나, AP와 무선 단말사이에 장애물 등이 일시적으로 지나갈 때 주로 발생하는 현상이다 결국, 현재 인터넷상에서 가장 광범위하게 사용되고 있는 무선 랜 기술인 IEEE 802.11은 이러한 특성으로 인해 사용자의 요구에 만족할만한 전송 성능을 나타내지 못하며, 특히 전송 계층에 TCP가 사용될 경우 불필요한 혼잡 제어 기법을 사용하게 함으로써 심각한 성능저하를 야기한다. 이러한 무선 랜 환경의 문제점을 해결하기 위해 MAC-layer LDA(Loss Differentiation Algorithm)가 제안되었다. MAC-layer LDA는 MAC 계풍의 Retry limit을 기반으로 CRD(Consecutive Retry Duration)를 무선 구간의 연집된 패킷손실 기간 이상 증가시켜, TCP의 불필요한 Timeout 발생 이전에 손실된 패킷을 효율적으로 복구하는 기법이다. 하지만, MAC-layer LDA 기법은 한정된 Retry limit의 증가로 인해 CRD가 연집된 패킷 손실 구간 보다 적은 경우가 발생하여 심각한 전송성능 저하를 가져온다. 또한, CRD의 증가는 무선 구간의 패킷 처리 시간을 증가시켜 대역폭과 무선 단말의 한정된 에너지 자원을 불필요하게 낭비하는 문제를 초래한다. 본 논문에서는 이러한 문제점을 개선하기 위해 Cross-layer 기법을 적용한 재전송 기법인 BLD(Burst Loss Detection) 모듈을 제안한다. BLD 모듈의 알고리즘은 현재 무선 랜 환경에서 가장 널리 사용되는 IEEE 802.11 MAC 프로토콜 기반의 재전송 기법으로서, MAC 계층과 TCP에서 사용되는 재전송 기법의 효율적인 연동을 통해 손실된 패킷을 복구한다. ns-2(Network Simulator) 시뮬레이터를 이용한 실험을 통해 BLD 모듈은 무선 구간의 연집적인 패킷 손실에 대해 효율적인 보상을 수행하여 전송 성능과 에너지 효율성을 향상시킬 수 있음을 확인하였다.
현재 도로의 공사뿐만 아니라 각종 공사 현장으로 인하여 자동차의 소통에 위험한 영향을 초래하고 있다. 나아가 공사지역의 주민과 통행자들에게까지 막대한 영향을 미치며 안전조치의 미흡으로 대형 사고를 야기할 가능성도 높다. 이러한 문제의 대안으로 선진국에서는 '교통유도경비'가 시행되고 있으며 특히, 일본의 경우 '교통유도경비' 제도의 시행 이후 교통사고 사망자 수가 크게 감소한 것으로, 교통유도경비가 상당한 역할을 한 것으로 분석되고 있다. 현재 우리나라의 경우 교통유도경비 제도가 시행되고 있지 않으며, 일부 건설 공사장에서 한정적으로 시행되고 있으나 대부분 전문성이 결여된 상태에서 임시적, 임의적으로 이루어지고 있는 상태이다. 우리나라에서 교통유도경비 제도의 도입으로 인하여 교통안전과 교통정체 등 안전문화를 한 단계 앞당길 수 있는 계기로 활용될 수 있을 것이다. 따라서 본 연구는 시민들의 요구에 기초하여 선진사례를 분석하고 현행 우리의 제도의 비교분석 한 후, 합리적인 교통유도경비 제도의 도입에 대한 대안을 마련하는데 목적이 있다. 본 연구를 통해 도출된 우리나라에서 교통유도경비의 도입방안을 제시하면 다음과 같다. 첫째, 교통유도경비 업무를 국내에 정착시키기 위해서는 경비업무의 종류에 교통유도경비 업무를 추가하는 등 교통유도업무의 법적 검토가 이루어져야 할 것이다. 둘째, 교통유도경비는 교통안전의 증진에 기여할 수 있는 제도로서 사회적 비용의 내부화에 기여할 수 있기 때문에 전문성과 안전지식, 표준화된 교통안전지도가 필요한 교육과 이를 위한 교육 시스템과 커리큘럼, 교재의 제작 등 자격신설을 갖추어야 할 것이다. 셋째, 교통유도경비원의 교육은 구체적인 교육과목을 갖추어 이론교육과 기능교육(실기)으로 구분하여 실시해야 할 것이다. 넷째, 시행방안을 위해서는 교재개발, 실기교육 내용 확정과 전문강사 양성, 운전학원 등 실기교육 공간의 확보가 필요하다. 나아가 교통유도경비 전반에 걸쳐 체계적인 발전을 위한 표준화 노력이 중요하며, 경비업계, 학계, 관련전문가, 관련 연구기관 등 각계의 참여 아래 표준화를 위한 지속적인 협의와 합의 도출이 요청된다. 다섯째, 교통유도경비는 일자리 창출 규모가 크며, 사회적인 파급력이 상당히 크기 때문에 향후 추진사항으로는 다양한 관계기관과의 네트워크 구축이 필요하다.
이동 컴퓨팅에서 고 수준의 QoS를 보장하기 위한 가장 중요한 이슈 중의 하나가 셀에서 가용할 수 있는 대역폭의 부족으로 인한 핸드-오프 종료를 감소시키는 것이다. 각 셀은 핸드-오프 호들을 위해 이웃 셀들에게 대역폭 예약을 요청하며, 예약된 대역폭은 신규 호가 아닌 핸드-오프 호들을 위해 사용된다. 핸드-오프 호를 위해 대역폭을 너무 많이 예약한다면 신규 호의 블록킹 확률이 증가하므로, 예약할 대역폭의 크기를 정확히 결정하는 것이 중요하다. 따라서, 이동 컴퓨팅 환경에서 적절한 크기의 대역폭 예약과 호 수락 제어를 통해 QoS 보장하는 것이 필수적이다. 본 논문에서는 이동 컴퓨팅 환경에서 멀티미디어 트래픽에게 지속적인 QoS를 보장하기 위해 대역폭 예약과 호 수락 제어 메커니즘을 제안하였다. 본 논문은 적절한 크기의 대역폭 예약을 위해 이동성 그래프와 2-계층 셀 구조를 기반으로 한 적응적 대역폭 예약을 제안한다. 전자는 클라이언트가 다음에 이동할 셀을 예측하는 반면, 후자는 핸드-오프 확률이 높은 클라이언트에게만 적응적 대역폭 예약 메커니즘을 적용한다. 본 논문은 클라이언트의 현재 셀과 PNC(Predicted Next Cell)에 호 수락 테스트를 수행하는 호 수락 제어를 제안하며, 이 메커니즘은 계산 및 네트워크 오버헤드를 줄일 수 있다. 본 논문에서 제시된 대역폭 예약 및 호 수락 제어 메커니즘의 성능을 평가하기 위해, 신규 호 블록킹률, 핸드-오프 호 종료율, 대역폭 이용율을 측정하였다. 시뮬레이션 결과, 본 논문의 호 수락 제어 메커니즘의 성능이 NR-CAT2, FR-CAT2, AR-CAT2와 같은 기존의 메커니즘들보다 우수함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.