• 제목/요약/키워드: networked multi-motor systems

검색결과 5건 처리시간 0.019초

A Study on Tracking Control for Networked Multi-Motor Systems

  • Lee, Hong-Hee;Jung, Eui-Heon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1897-1900
    • /
    • 2004
  • In recent years, a lot of industrial equipments have serial communication channel such as FieldBus (CAN, Profibus, etc.) or Ethernet that provides real time communication between industrial equipments. Theses applications include gantry crane, robot, chip mounter, etc.. In this paper, we discuss the synchronization technique for networked multi-motor systems where controllers (commercial servo amps) are distributed and interconnected by CAN (Controller Area Networks). We first describe the equivalent model for the individual servo-amp and motor using the frequency response. We design the $H{\infty}$ controller for motion synchronization. Finally, the synchronization technique using the equivalent model and the $H{\infty}$ controller is verified by the simulation and the experiment.

  • PDF

산업용 유도전동기의 네트워크 운전을 위한 인터넷과 CAN을 이용한 원격분산 Embedded System 설계 (Design of a Remote Distributed Embedded System Using Internet and CAN for multi-induction motor of Building and Industrial fields)

  • 홍원표;김중곤
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.302-308
    • /
    • 2006
  • We introduce the concept of a remote distributed embedded system to integrated fieldbus based control systems in internet/Intranet. As a result fieldbus systems are opened up for remote monitoring, remote maintenance, and remote control applications using state of the art Web-technology. This paper addresses the design of a remote distributed embedded system using Internet and CAN for multi-Induction motor of Building and Industrial field. The fieldbus used the CAN based networked intelligent multi-motor control system using DSP2812 microprocessor. To build such a system, the TCP/IP-CAN Gateway which convert a CAN protocol to TCP/IP protocol and vice verse, was designed. A experimental simulation system consists of a TCP/IP-CAN Gateway in remote place and a command PC ti be connected ti Ethernet.

  • PDF

Networked Intelligent Motor-Control Systems Using LonWorks Fieldbus

  • 홍원표
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2004년도 학술대회 논문집
    • /
    • pp.365-370
    • /
    • 2004
  • The integration of intelligent devices, devices-level networks, and software into motor control systems can deliver improved diagnostics, fast warnings for increased system reliability, design flexibility, and simplified wiring. Remote access to motor-control information also affords an opportunity for reduced exposure to hazardous voltage and improved personnel safety during startup and trouble-shooting. This paper presents LonWorks fieldbus networked intelligent induction control system architecture. Experimental bed system with two inverter motor driving system for controlling 1.5kW induction motor is configured for LonWorks networked intelligent motor control. In recent years, MCCs have evolved to include component technologies, such as variable-speed drives, solid-state starters, and electronic overload relays. Integration was accomplished through hardwiring to a programmable logic controller (PLC) or distributed control system (DCS). Devicelevel communication networks brought new possibilities for advanced monitoring, control and diagnostics. This LonWorks network offered the opportunity for greatly simplified wiring, eliminating the bundles of control interwiring and corresponding complex interwiring diagrams. An intelligent MCC connected in device level control network proves users with significant new information for preventing or minimizing downtime. This information includes warnings of abnormal operation, identification of trip causes, automated logging of events, and electronic documentation. In order to show the application of the multi-motors control system, the prototype control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using LonWorks network.

  • PDF

산업용 유도전동기의 원격제어를 위한 분산 Embedded 시스템에 관한 연구 (Design of a Distributed Embedded System for Remote Multi-Induction Motor Control of Industrial Fields)

  • 홍원표;이승학
    • 조명전기설비학회논문지
    • /
    • 제21권1호
    • /
    • pp.82-90
    • /
    • 2007
  • 이 논문은 유도전동기 원격제어를 위한 분산 임베디드시스템에 관한 연구로 제어시스템은 CAN통신을 기반으로 하는 네트워크를 구성하였으며 원격제어를 위하여 Ethernet TCP/IP-CAN 게이트웨이를 개발하였다. 이를 통하여 유도전동기 2대의 구동시스템을 제작하여 원격제어실험을 수행하였으며 실험 결과 개발된 알고리즘 및 TCP/IP-CAN 게이트웨이가 매우 우수한 성능을 가지고 있음을 확인하였다.

Development of High Performance LonWorks Based Control Modules for Network-based Induction Motor Control

  • Kim, Jung-Gon;Hong, Won?Pyo;Yun, Byeong-Ju;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.414-420
    • /
    • 2005
  • The ShortStack Micro Server enables any product that contains a microcontroller or microprocessor to quickly and inexpensively become a networked, Internet-accessible device. The ShortStack Micro Server provides a simple way to add LonWorks networking to new or existing smart devices. . It implements the LonTalk protocol and provides the physical interface with the LonWorks communication. The ShortStack host processor can be an 8, 16, or 32-bit microprocessor or microcontrollers. The ShortStack API and driver typically require about 4kbytes of program memory on the host processor and less than 200 bytes of RAM. The interface between host processor and the ShortStack Micro Server may be a Serial Communication Interface (SCI). The LonWorks control module with a high performance is developed, which is composed of the 8 bit PIC Microprocessor for host processor and the smart neuron chip for the ShortStack Micro Server. This intelligent control board is verified as proceeding the various function tests from experimental system with an boost pump and inverter driving systems. It is also confirmed that the developed control module provides stably 0-10VDC linear signal to the input signal of inverter driving system for varying the induction motor speed. Thus, the experimental results show that the fabricating intelligent board carried out very well the various functions in the wide operating ranges of boost pump system. This developed control module expect to apply to industrial fields to require the comparatively exact control and monitoring such as multi-motor driving system with inverter, variable air volume system and the boost pump water supply systems.

  • PDF