• 제목/요약/키워드: network-distributed computing

Search Result 449, Processing Time 0.024 seconds

Acceptance and Effectiveness of Distance Learning in Public Education in Saudi Arabia During Covid19 Pandemic: Perspectives from Students, Teachers and Parents

  • Alkinani, Edrees A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.54-65
    • /
    • 2021
  • The movement control order and shutting down educational institution in Saudi Arabia has jeopardized the teaching and learning process. Education was shifted to distance learning in order to avoid any academic loss. In the middle of the Covid-19 crisis, there is a need to assess the full image of e-learning in Saudi Arabia. To investigate student and teachers' perception and acceptance, parents' attitudes and believes about distance education are the main goals of the study. The mix-method research design was employed to collect data. Three surveys were distributed to 100 students and 50 teachers and 50 parents from different educational institutions in Saudi Arabia, while semi-structured interviews were conducted with 10 parents. Random stratified and convenient sampling methods were adopted. Both descriptive and content analysis was conducted using SPSS25.0 and NVIVO software for quantitative and qualitative data accordingly. The findings showed that students are comfortable with remote education and are receiving enough support from schools and instructors but they think online education can't replace conventional face-to-face learning. Moreover, the results showed that teachers are having challenges in preparing online classes because of the development of conducting online classes and the lack of training. However, parents showed negative attitudes regarding the benefits and values of remote education and preferred conventional learning styles in elementary schools. Parents tended to reject and resist distance learning for several reasons: professional knowledge and lack of time to support their young kids in online classes, the shortcomings of e-learning, young children's inadequate self-regulation. Saudi parents are neither trained nor ready to use e-learning. The study provided suggestion and implications for teacher education and policymakers.

Hazelcast Vs. Ignite: Opportunities for Java Programmers

  • Maxim, Bartkov;Tetiana, Katkova;S., Kruglyk Vladyslav;G., Murtaziev Ernest;V., Kotova Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.406-412
    • /
    • 2022
  • Storing large amounts of data has always been a big problem from the beginning of computing history. Big Data has made huge advancements in improving business processes by finding the customers' needs using prediction models based on web and social media search. The main purpose of big data stream processing frameworks is to allow programmers to directly query the continuous stream without dealing with the lower-level mechanisms. In other words, programmers write the code to process streams using these runtime libraries (also called Stream Processing Engines). This is achieved by taking large volumes of data and analyzing them using Big Data frameworks. Streaming platforms are an emerging technology that deals with continuous streams of data. There are several streaming platforms of Big Data freely available on the Internet. However, selecting the most appropriate one is not easy for programmers. In this paper, we present a detailed description of two of the state-of-the-art and most popular streaming frameworks: Apache Ignite and Hazelcast. In addition, the performance of these frameworks is compared using selected attributes. Different types of databases are used in common to store the data. To process the data in real-time continuously, data streaming technologies are developed. With the development of today's large-scale distributed applications handling tons of data, these databases are not viable. Consequently, Big Data is introduced to store, process, and analyze data at a fast speed and also to deal with big users and data growth day by day.

Centralized Machine Learning Versus Federated Averaging: A Comparison using MNIST Dataset

  • Peng, Sony;Yang, Yixuan;Mao, Makara;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.742-756
    • /
    • 2022
  • A flood of information has occurred with the rise of the internet and digital devices in the fourth industrial revolution era. Every millisecond, massive amounts of structured and unstructured data are generated; smartphones, wearable devices, sensors, and self-driving cars are just a few examples of devices that currently generate massive amounts of data in our daily. Machine learning has been considered an approach to support and recognize patterns in data in many areas to provide a convenient way to other sectors, including the healthcare sector, government sector, banks, military sector, and more. However, the conventional machine learning model requires the data owner to upload their information to train the model in one central location to perform the model training. This classical model has caused data owners to worry about the risks of transferring private information because traditional machine learning is required to push their data to the cloud to process the model training. Furthermore, the training of machine learning and deep learning models requires massive computing resources. Thus, many researchers have jumped to a new model known as "Federated Learning". Federated learning is emerging to train Artificial Intelligence models over distributed clients, and it provides secure privacy information to the data owner. Hence, this paper implements Federated Averaging with a Deep Neural Network to classify the handwriting image and protect the sensitive data. Moreover, we compare the centralized machine learning model with federated averaging. The result shows the centralized machine learning model outperforms federated learning in terms of accuracy, but this classical model produces another risk, like privacy concern, due to the data being stored in the data center. The MNIST dataset was used in this experiment.

A Multi-Middleware Bridge for Dynamic Extensibility and Load Balancing in Home Network Environments (홈 네트워크 환경에서의 동적 확장성과 부하분산을 위한 다중 미들웨어 브리지)

  • Kim, Youn-Woo;Jang, Hyun-Su;Song, Chang-Hwan;Eom, Young-Ik
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.263-272
    • /
    • 2009
  • For implementing the ubiquitous computing environments with smart home infrastructures, various research on the home network have been performed by several research institutes and companies. Due to the various home network middleware that are developed recently, the standardization of the home network middleware is being delayed and it calls for the middleware bridge which solves the interoperability problem among the heterogeneous middlewares. Now the research on the scheme for interoperability and the development of the various bridges are in progress, such as one-to-one bridge supporting interoperability between two middlewares and one-to-many bridge supporting interoperability among the multi-middlewares. However, existing systems and schemes does not consider the dynamic extensibility and performance that is particularly needed in the smart home environments. The middleware bridge should provide bridge extensibility with zero-configuration for non-expert users. It should also provide the load balancing scheme for efficient and proper traffic distribution. In this paper, we propose a Multi-Middleware Bridge(MMB) for dynamic extensibility and load balancing in home network environments. MMB provides bridge scalability and load balancing through the distributed system structure. We also verify the features such as interoperability, bridge extensibility, and the performance of the load balancing algorithm.

A Minimum Wavelength Assignment Technique for Wavelength-routed Optical Network-on-Chip (파장 라우팅 광학 네트워크-온-칩에서의 최소 개수 파장 할당 기법)

  • Kim, Youngseok;Lee, Jae Hun;Cui, Di;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.82-90
    • /
    • 2013
  • An Optical Network-on-Chip(ONoC) based on silicon photonics is one of promising technology for next generation exascale computing architectures. Recent active researches on ONoC focus on improving bandwidth further and avoiding path collisions by using wavelength division multiplexing (WDM). However, the number of wavelengths used for the WDM increases linearly as the number of Processing Element (PE) increases in existing ONoCs which adopt centralized routing architecture. The problem will also arises growing cost of optical devices such as light switches and light sources and limits the scalability of ONoC due to the sinal loss caused by interference of distinct light sources. In this paper, we proposes a distributed routing architecture for ONoC which is based on 2D-mesh structure using WDM technique and present a method that minimize the required number of wavelengths exploiting the connectivity of communication. In comparison with existing centralized routing architectures, results show reduction by 56% of the number of wavelengths and 21% of the number of optical switches in $8{\times}8$ networks.

An Analysis of Big Video Data with Cloud Computing in Ubiquitous City (클라우드 컴퓨팅을 이용한 유시티 비디오 빅데이터 분석)

  • Lee, Hak Geon;Yun, Chang Ho;Park, Jong Won;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.45-52
    • /
    • 2014
  • The Ubiquitous-City (U-City) is a smart or intelligent city to satisfy human beings' desire to enjoy IT services with any device, anytime, anywhere. It is a future city model based on Internet of everything or things (IoE or IoT). It includes a lot of video cameras which are networked together. The networked video cameras support a lot of U-City services as one of the main input data together with sensors. They generate huge amount of video information, real big data for the U-City all the time. It is usually required that the U-City manipulates the big data in real-time. And it is not easy at all. Also, many times, it is required that the accumulated video data are analyzed to detect an event or find a figure among them. It requires a lot of computational power and usually takes a lot of time. Currently we can find researches which try to reduce the processing time of the big video data. Cloud computing can be a good solution to address this matter. There are many cloud computing methodologies which can be used to address the matter. MapReduce is an interesting and attractive methodology for it. It has many advantages and is getting popularity in many areas. Video cameras evolve day by day so that the resolution improves sharply. It leads to the exponential growth of the produced data by the networked video cameras. We are coping with real big data when we have to deal with video image data which are produced by the good quality video cameras. A video surveillance system was not useful until we find the cloud computing. But it is now being widely spread in U-Cities since we find some useful methodologies. Video data are unstructured data thus it is not easy to find a good research result of analyzing the data with MapReduce. This paper presents an analyzing system for the video surveillance system, which is a cloud-computing based video data management system. It is easy to deploy, flexible and reliable. It consists of the video manager, the video monitors, the storage for the video images, the storage client and streaming IN component. The "video monitor" for the video images consists of "video translater" and "protocol manager". The "storage" contains MapReduce analyzer. All components were designed according to the functional requirement of video surveillance system. The "streaming IN" component receives the video data from the networked video cameras and delivers them to the "storage client". It also manages the bottleneck of the network to smooth the data stream. The "storage client" receives the video data from the "streaming IN" component and stores them to the storage. It also helps other components to access the storage. The "video monitor" component transfers the video data by smoothly streaming and manages the protocol. The "video translator" sub-component enables users to manage the resolution, the codec and the frame rate of the video image. The "protocol" sub-component manages the Real Time Streaming Protocol (RTSP) and Real Time Messaging Protocol (RTMP). We use Hadoop Distributed File System(HDFS) for the storage of cloud computing. Hadoop stores the data in HDFS and provides the platform that can process data with simple MapReduce programming model. We suggest our own methodology to analyze the video images using MapReduce in this paper. That is, the workflow of video analysis is presented and detailed explanation is given in this paper. The performance evaluation was experiment and we found that our proposed system worked well. The performance evaluation results are presented in this paper with analysis. With our cluster system, we used compressed $1920{\times}1080(FHD)$ resolution video data, H.264 codec and HDFS as video storage. We measured the processing time according to the number of frame per mapper. Tracing the optimal splitting size of input data and the processing time according to the number of node, we found the linearity of the system performance.

Distributed Trust Management for Fog Based IoT Environment (포그 기반 IoT 환경의 분산 신뢰 관리 시스템)

  • Oh, Jungmin;Kim, Seungjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.731-751
    • /
    • 2021
  • The Internet of Things is a huge group of devices communicating each other and the interconnection of objects in the network is a basic requirement. Choosing a reliable device is critical because malicious devices can compromise networks and services. However, it is difficult to create a trust management model due to the mobility and resource constraints of IoT devices. For the centralized approach, there are issues of single point of failure and resource expansion and for the distributed approach, it allows to expand network without additional equipment by interconnecting each other, but it has limitations in data exchange and storage with limited resources and is difficult to ensure consistency. Recently, trust management models using fog nodes and blockchain have been proposed. However, blockchain has problems of low throughput and delay. Therefore, in this paper, a trust management model for selecting reliable devices in a fog-based IoT environment is proposed by applying IOTA, a blockchain technology for the Internet of Things. In this model, Directed Acyclic Graph-based ledger structure manages trust data without falsification and improves the low throughput and scalability problems of blockchain.

Design and Implementation of 3D Studio Max Plug-In in Collaborative Systems (협력시스템에서 3D 스튜디오 맥스 플러그인 설계 및 개발)

  • Kwon, Tai-Sook;Lee, Sung-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.5
    • /
    • pp.498-509
    • /
    • 2001
  • Collaborative systems allow users, who may be far removed from each other geographically, to do collaborative work such as 3D animation, computer game, and industrial design in a single virtual space. This paper describes our experience to develop a collaborative system framework that aims at expanding the some functions of a stand-alone visual modeling tool, called 3D Studio Max, into those of the distributed collaborative working environments. The paper mainly deals with design and implementation of a 3D shared-object Plug-In with respect to the 3D Studio Max Plug-In Software Development Kit in the distributed collaborative system developed by the authors. There are two major functions of the proposed scheme; one is to write 3D object-information to the shared memory after extracting it from the 3D Studio Max, the other is to create 3D objects after retrieving them from the shared memory. Also, the proposed scheme provides a simple way of storing 3D objects that have variable size, by means of shared memory which located in between the collaborative system clients and 3D studio Max. One of the remarkable virtures of the Plug-In is to reduce a considerable amount of shared object data which in consequence can mitigate the network overhead. This can be achieved by the fact that the system is able to extract a minimum amount of 3D objects that are required to transmit. Also, using the proposed scheme, user can facilitate 3D Studio Max into distributed collaborative working environments. This, in consequence give many benefits such as saving time as well as eliminating space constraints in the course of 3D modeling when we are under industrial design process.

  • PDF

Interoperability of OpenGIS Component and Spatial Analysis Component (개방형 GIS 컴포넌트에서의 공간분석 컴포넌트 연동)

  • Min, Kyoung-Wook;Jang, In-Sung;Lee, Jong-Hun
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.49-62
    • /
    • 2001
  • Recently, component-based software has become main trends in designing and developing computer software products. This component-based software has advantage of the interoperability on distributed computing environment and the reusability of pre-developed components. Also, GIS is designed and implemented with this component-based methodology, called Open GIS Component. OGC(OpenGIS Consortium) have announced various implementation and design specification and topic in GIS. In GIS, Spatial analysis functions like network analysis, TIN analysis are very important function and basically, estimate system functionality and performance using this analysis methods. The simple feature geometry specification is announced by OGC to increase the full interoperability of various spatial data. This specification includes just geometry spatial data model. However, in GIS which manages spatial data, not only geometric data but also topological data and various analysis functions have been used. The performance of GIS depends on how this geometric and topological data is managed well and how various spatial analyses are executed efficiently. So it requires integrated spatial data model between geometry and topology and extended data model of topology for spatial analysis, in case network analysis and TIN analysis in open GIS component. In this paper, we design analysis component like network analysis component and TIN analysis component. To manage topological information for spatial analysis in open GIS component, we design extended data model of simple feature geometry for spatial analysis. In addition to, we design the overall system architecture of open GIS component contained this topology model for spatial analysis.

  • PDF

A Study on the Basic Design Education Using WWW (WWW를 활용한 기초디자인교육에 관한 연구)

  • 김소영;임창영
    • Archives of design research
    • /
    • v.11 no.1
    • /
    • pp.161-172
    • /
    • 1998
  • The evolution of computing environments caused various dharges in our society. The change cj instruction media is one of these effects. WWW using network techndogy is regarded as a pov.powerful tool for rerrote instruction. The methods of utilizing network technologies in design instrudion and design process rould be diversified comparing with those of other general instruction. Computer graphics has been regarded as a very use!u design tool for its accuracy and rapidty. Network can help us to do creative work using cornplter graphics. The merits of this technology are sharing resources and rraking it easy to roIlaborate. Recent cxxnputer graphics instruction has some defects in oontents and methods. The oontents have a weak relationship with other industrial design subjects. From above, the purpose of this thesis is to use computer graphics and netv.urk technology for supporting basic design instruction. Virtual gallery using WWW can be a cyberspare v.tlere the evaluation of results and the exchange of information take plare. This tool makes it easier to oomrunicate and oollaborate with dassmates. A casestudy-Composition with basic objectswas exea.rted by individual for distributed asynchronous rmde. The results of this thesis are summarized for four factors. Rrst, it was easy to transform idea. Serond, student-oriented working was performed. Third, interaction among students was activated. Fourth, not only final results, but also midterm results was oonsidered for evaluation. These methods also have problems as rerent instruction methods, but it rould be used as a instruction tool to compensate for existing instruction methods.

  • PDF