• Title/Summary/Keyword: network virtualization

Search Result 245, Processing Time 0.031 seconds

A Case study on the Utilization of Emulation Based Network Testbeds (에뮬레이션 기반 테스트베드 활용 사례 연구)

  • Lee, Minsun;Yoo, Kwan-Jong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.61-67
    • /
    • 2018
  • Emulab software was developed by the team of University of Utah and it has been replicated at dozens of other sites in the world. Although KREONET Emulab, which established by the Korea Institute of Science and Technology Information, has only a modest number of compute nodes it has been provided an ideal playground to conduct various research for network protocols, cyber security and convergence research. A testbed is a critical enabler of experimental research and researchers only carry out the experiments that are supported by the testbed. This paper outlines the Utah Emulab's status and use types among the last 10 years of operation results and compares them with the ones with the KREONET Emulab. In addition, Testbed-as-a-Service(TaaS) is discussed to upgrade the testbed for the convergence research community services.

Cybertrap : Unknown Attack Detection System based on Virtual Honeynet (Cybertrap : 가상 허니넷 기반 신종공격 탐지시스템)

  • Kang, Dae-Kwon;Hyun, Mu-Yong;Kim, Chun-Suk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.6
    • /
    • pp.863-871
    • /
    • 2013
  • Recently application of open protocols and external network linkage to the national critical infrastructure has been growing with the development of information and communication technologies. This trend could mean that the national critical infrastructure is exposed to cyber attacks and can be seriously jeopardized when it gets remotely operated or controlled by viruses, crackers, or cyber terrorists. In this paper virtual Honeynet model which can reduce installation and operation resource problems of Honeynet system is proposed. It maintains the merits of Honeynet system and adapts the virtualization technology. Also, virtual Honeynet model that can minimize operating cost is proposed with data analysis and collecting technique based on the verification of attack intention and focus-oriented analysis technique. With the proposed model, new type of attack detection system based on virtual Honeynet, that is Cybertrap, is designed and implemented with the host and data collecting technique based on the verification of attack intention and the network attack pattern visualization technique. To test proposed system we establish test-bed and evaluate the functionality and performance through series of experiments.

An Operations and Management Framework for The Integrated Software Defined Network Environment (소프트웨어 정의 네트워크 통합 운영 및 관리 프레임워크)

  • Kim, Dongkyun;Gil, Joon-Min
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.557-564
    • /
    • 2013
  • An important research challenge about the traditional Internet environment is to enable open networking architecture on which end users are able to innovate the Internet based on the technologies of network programmability, virtualization, and federation. The SDN (Software Defined Network) technology that includes OpenFlow protocol specifications, is suggested as a major driver for the open networking architecture, and is closely coupled with the classical Internet (non-SDN). Therefore, it is very important to keep the integrated SDN and non-SDN network infrastructure reliable from the view point of network operators and engineers. Under this background, this paper proposes an operations and management framework for the combined software defined network environment across not only a single-domain network, but also multi-domain networks. The suggested framework is designed to allow SDN controllers and DvNOC systems to interact with each other to achieve sustainable end-to-end user-oriented SDN and non-SDN integrated network environment. Plus, the proposed scheme is designed to apply enhanced functionalities on DvNOC to support four major network failure scenarios over the combined network infrastructure, mainly derived from SDN controllers, SDN devices, and the connected network paths.

A Management for IMS Network Using SDN and SNMP (SDN과 SNMP를 이용한 IMS 네트워크 관리)

  • Yang, Woo-Seok;Kim, Jung-Ho;Lee, Jae-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.694-699
    • /
    • 2017
  • In accordance with the development of information and communications technology, a network user has to be able to use quality of service (QoS)-based multimedia services easily. Thus, information and communications operators began to focus on a technique for providing multimedia services. The IP Multimedia Subsystem (IMS) is a platform based on Internet Protocol (IP) as a technology for providing multimedia services and application services. The emerging 5G networks are described as having massive capacity and connectivity, adaptability, seamless heterogeneity, and great flexibility. The explosive growth in network services and devices for 5G will cause excessive traffic loads. In this paper, software-defined networking (SDN) is applied as a kind of virtualization technology for the network in order to minimize the traffic load, and Simple Network Management Protocol (SNMP) is used to provide more efficient network management. To accomplish these purposes, we suggest the design of a dynamic routing algorithm to be utilized in the IMS network using SDN and an SNMP private management information base (MIB). The proposal in this paper gives information and communications operators the ability to supply more efficient network resources.

Development of SDN-based Network Platform for Mobility Support (이동성 지원을 위한 SDN 기반의 네트워크 플랫폼 개발)

  • Lee, Wan-Jik;Lee, Ho-Young;Heo, Seok-Yeol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.401-407
    • /
    • 2019
  • SDN(Softeware Defined Networking) has emerged to address the rapidly growing demand for cloud computing and to support network virtualization services. Therefor many companies and organizations have taken SDN as a next-generation network technology. However, unlike the wired network where the SDN is originally designed, the SDN in the wireless network has a restriction that it can not provide the mobility of the node. In this paper, we extended existing openflow protocol of SDN and developed SDN-based network platform, which enables the SDN controller to manage the radio resources of its network and support the mobility of the nodes. The mobility support function of this paper has the advantage that a node in the network can move using its two or more wireless interfaces by using the radio resource management function of the SDN controller. In order to test the functions implemented in this paper, we measured parameters related to various transmission performance according to various mobile experiments, and compared parameters related to performance using one wireless interface and two interfaces. The SDN-based network platform proposed in this paper is expected to be able to monitor the resources of wireless networks and support the mobility of nodes in the SDN environment.

An Efficient Software Defined Data Transmission Scheme based on Mobile Edge Computing for the Massive IoT Environment

  • Kim, EunGyeong;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.974-987
    • /
    • 2018
  • This paper presents a novel and efficient data transmission scheme based on mobile edge computing for the massive IoT environments which should support various type of services and devices. Based on an accurate and precise synchronization process, it maximizes data transmission throughput, and consistently maintains a flow's latency. To this end, the proposed efficient software defined data transmission scheme (ESD-DTS) configures and utilizes synchronization zones in accordance with the 4 usage cases, which are end node-to-end node (EN-EN), end node-to-cloud network (EN-CN), end node-to-Internet node (EN-IN), and edge node-to-core node (EdN-CN); and it transmit the data by the required service attributes, which are divided into 3 groups (low-end group, medium-end group, and high-end group). In addition, the ESD-DTS provides a specific data transmission method, which is operated by a buffer threshold value, for the low-end group, and it effectively accommodates massive IT devices. By doing this, the proposed scheme not only supports a high, medium, and low quality of service, but also is complied with various 5G usage scenarios. The essential difference between the previous and the proposed scheme is that the existing schemes are used to handle each packet only to provide high quality and bandwidth, whereas the proposed scheme introduces synchronization zones for various type of services to manage the efficiency of each service flow. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of throughput, control message overhead, and latency. Therefore, the proposed ESD-DTS is very suitable for upcoming 5G networks in a variety of massive IoT environments with supporting mobile edge computing (MEC).

Optimal Flow Distribution Algorithm for Efficient Service Function Chaining (효율적인 서비스 기능 체이닝을 위한 최적의 플로우 분배 알고리즘)

  • Kim, Myeongsu;Lee, Giwon;Choo, Sukjin;Pack, Sangheon;Kim, Younghwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1032-1039
    • /
    • 2015
  • Service function chaining(SFC) defines the creation of network services that consist of an ordered set of service function. A multiple service function instances should be deployed across networks for scalable and fault-tolerant SFC services. Therefore, an incoming flows should be distributed to multiple service function instances appropriately. In this paper, we formulate the flow distribution problem in SFC aiming at minimizing the end-to-end flow latency under resource constraints. Then, we evaluate its optimal solution in a realistic network topology generated by the GT-ITM topology generator. Simulation results reveal that the optimal solution can reduce the total flow latency significantly.

Resource Allocation Method using Credit Value in 5G Core Networks (5G 코어 네트워크에서 Credit Value를 이용한 자원 할당 방안)

  • Park, Sang-Myeon;Mun, Young-Song
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.515-521
    • /
    • 2020
  • Recently, data traffic has exploded due to development of various industries, which causes problems about losing of efficiency and overloaded existing networks. To solve these problems, network slicing, which uses a virtualization technology and provides a network optimized for various services, has received a lot of attention. In this paper, we propose a resource allocation method using credit value. In the method using the clustering technology, an operation for selecting a cluster is performed whenever an allocation request for various services occurs. On the other hand, in the proposed method, the credit value is set by using the residual capacity and balancing so that the slice request can be processed without performing the operation required for cluster selection. To prove proposed method, we perform processing time and balancing simulation. As a result, the processing time and the error factor of the proposed method are reduced by about 13.72% and about 7.96% compared with the clustering method.

A Study on Stabilizing a Network Security Zone Based on the Application of Logical Area to Communication Bandwidth (통신 대역폭 논리영역 적용 기반의 네트워크 보안구간 안정화 연구)

  • Seo, Woo-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3462-3468
    • /
    • 2015
  • Regarding countless network disorders or invasions happening nowadays from 2014 until 2015, illegal access intended to attack through the communication line provided by ISP (Internet Service Provider) appears to be the source of the problem. As a defensive way to prevent such network-based attacks, not only stabilization structures for network communication but various policies as well as physical security devices and solutions corresponding to those have been realized and established. Therefore, now is the time to gain foundational research data to secure network security sections by producing logical area on communication bandwidth or such, suggest tasks to expand the communication line which is another research topic in the network security market, and recognize the fact that the active communication bandwidth linkage paradigm using network communication bandwidth is needed as one of the areas that can realize physical security. Additionally, it is necessary to limit the data in the forms of organizing visible security structures into a certain range of physical information by re-dividing communication capacity being currently provided by telecommunicators into subdivided organizational areas and applying the logical virtualization of communication capacity in each of the areas divided. By proposing a network security section based on a logical field application in place of the existing physical structure, basic data that designs a stable physical network communication structure will be provided.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.