• Title/Summary/Keyword: network theory

Search Result 1,854, Processing Time 0.032 seconds

Exploring Near-Future Potential Extreme Events(X-Events) in the Field of Science and Technology -With a Focus on Government Emergency Planning Officers FGI Results -

  • Sang-Keun Cho;Jong-Hoon Kim;Ki-Woon Kim;In-Chan Kim;Myung-Sook Hong;Jun-Chul Song;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.310-316
    • /
    • 2023
  • This study aims to predict uncertain future scenarios that may unfold in South Korea in the near future, utilizing the theory of extreme events(X-events). A group of 32 experts, consisting of government emergency planning officers, was selected as the focus group to achieve this objective. Using the Focus Group Interview (FGI) technique, opinions were gathered from this focus group regarding potential X-events that may occur within the advanced science and technology domains over the next 10 years. The analysis of these opinions revealed that government emergency planning officers regarded the "Obsolescence of current technology and systems," particularly in the context of cyber network paralysis as the most plausible X-event within science and technology. They also put forth challenging and intricate opinions, including the emergence of new weapon systems and ethical concerns associated with artificial intelligence (AI). Given that X-events are more likely to emerge in unanticipated areas rather than those that are widely predicted, the results obtained from this study carry significant importance. However, it's important to note that this study is grounded in a limited group of experts, highlighting the necessity for subsequent research involving a more extensive group of experts. This research seeks to stimulate studies on extreme events at a national level and contribute to the preparation for future X-event predictions and strategies for addressing them.

Apply evolved grey-prediction scheme to structural building dynamic analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • In recent years, an increasing number of experimental studies have shown that the practical application of mature active control systems requires consideration of robustness criteria in the design process, including the reduction of tracking errors, operational resistance to external disturbances, and measurement noise, as well as robustness and stability. Good uncertainty prediction is thus proposed to solve problems caused by poor parameter selection and to remove the effects of dynamic coupling between degrees of freedom (DOF) in nonlinear systems. To overcome the stability problem, this study develops an advanced adaptive predictive fuzzy controller, which not only solves the programming problem of determining system stability but also uses the law of linear matrix inequality (LMI) to modify the fuzzy problem. The following parameters are used to manipulate the fuzzy controller of the robotic system to improve its control performance. The simulations for system uncertainty in the controller design emphasized the use of acceleration feedback for practical reasons. The simulation results also show that the proposed H∞ controller has excellent performance and reliability, and the effectiveness of the LMI-based method is also recognized. Therefore, this dynamic control method is suitable for seismic protection of civil buildings. The objectives of this document are access to adequate, safe, and affordable housing and basic services, promotion of inclusive and sustainable urbanization, implementation of sustainable disaster-resilient construction, sustainable planning, and sustainable management of human settlements. Simulation results of linear and non-linear structures demonstrate the ability of this method to identify structures and their changes due to damage. Therefore, with the continuous development of artificial intelligence and fuzzy theory, it seems that this goal will be achieved in the near future.

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng;Wenjun Dai;Zeyu Wang;Adham E. Ragab
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.231-249
    • /
    • 2024
  • When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Antecedents of Trust and Effects on Committment in B2B e-Marketplace (B2B 마켓플레이스에서 신뢰의 선행요인과 몰입에 미치는 영향)

  • Oh, Sang-Hyun;Kim, Sang-Hyeon
    • Journal of Distribution Research
    • /
    • v.13 no.1
    • /
    • pp.1-33
    • /
    • 2008
  • As the interest in the business-to-business(B2B) electronic commerce is increasing, many companies are participating in the B2B e-Marketplaces. The e-Marketplace is defined as the virtual market that many players take part in to transact. The e-Marketplace has an influenced on the manner in which organizational buyers and sellers interact. As a result, it is important to develop an understanding of the behaviors of firms that use these electronic marketplaces. The purpose of this study is to develop a comprehensive model for trust and commitment of B2B e-Marketplace and empirically to examine their structural relationships. Drawing from trust and commitment theory in the interorganizational relationship and B2B electronic commerce context, this study identifies network externality, interactivity, justice, quality of information sharing, institutional assurance as the determinants of trust and commitment of e-Marketplace. The proposed model hypothesized that (1) trust is a function of network externality, interactivity, justice, quality of information sharing, institutional assurance, (2) attitudinal and behavioral commitment is a function of trust, (3) behavioral commitment is a function of attitudinal commitment. The proposed model is tested using organizational-level survey data from 187 buying organizations that conduct business in MRO e-Marketplaces. The data were tested by reliability test, correlation analysis, exploratory factor analysis, confirmatory factor analysis and covariance structure analysis. The results indicate that (1) trust is influenced by network externality, interactivity, justice, institutional assurance, (2) attitudinal commitment and behavioral commitment is influenced by trust (3) behavioral commitment is influenced by attitudinal commitment. Also, the empirical results confirmed that trust play a strong, central role in determinging e-Marketplace commitment. The key theoretical contribution of this research is that it begins to extend interorganizational information system literature in areas such as B2B Internet e-Marketplace. Managerially, this study contributes tn the understanding of the role of B2B e-Markeplace providers in Internet situation. And Limitations of this study and guidelines for future researches are also discussed.

  • PDF

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

Tracing the Development and Spread Patterns of OSS using the Method of Netnography - The Case of JavaScript Frameworks - (네트노그라피를 이용한 공개 소프트웨어의 개발 및 확산 패턴 분석에 관한 연구 - 자바스크립트 프레임워크 사례를 중심으로 -)

  • Kang, Heesuk;Yoon, Inhwan;Lee, Heesan
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.131-150
    • /
    • 2017
  • The purpose of this study is to observe the spread pattern of open source software (OSS) while establishing relations with surrounding actors during its operation period. In order to investigate the change pattern of participants in the OSS, we use a netnography on the basis of online data, which can trace the change patterns of the OSS depending on the passage of time. For this, the cases of three OSSs (e.g. jQuery, MooTools, and YUI), which are JavaScript frameworks, were compared, and the corresponding data were collected from the open application programming interface (API) of GitHub as well as blog and web searches. This research utilizes the translation process of the actor-network theory to categorize the stages of the change patterns on the OSS translation process. In the project commencement stage, we identified the type of three different OSS-related actors and defined associated relationships among them. The period, when a master commences a project at first, is refined through the course for the maintenance of source codes with persons concerned (i.e. project growth stage). Thereafter, the period when the users have gone through the observation and learning period by being exposed to promotion activities and codes usage respectively, and becoming to active participants, is regarded as the 'leap of participants' stage. Our results emphasize the importance of promotion processes in participants' selection of the OSS for participation and confirm the crowding-out effect that the rapid speed of OSS development retarded the emergence of participants.

  • PDF

The Effect of the Subjective Wellbeing on the Addiction and Usage Motivation of Social Networking Services: Moderating Effect of Social Tie (SNS 이용동기와 SNS 중독이 주관적 웰빙에 미치는 영향: 사회적 유대감의 조절효과)

  • Noh, Mi-Jin;Jang, Sung-Hee
    • Management & Information Systems Review
    • /
    • v.35 no.4
    • /
    • pp.99-122
    • /
    • 2016
  • The social networking services (SNSs) have become popular among smartphone users, and one of the most popular services. In order to explain users' motivations toward SNS, this study considers uses and gratification theory which can explain individuals' motivations to select certain media channels. The purposes of this study is to investigate the relationships between motivations and addiction of SNS, and between addiction of SNS and decline in the subjective wellbeing. We examine moderating effects of social tie based on the social capital theory in the relationships between SNS addiction and decline in the subjective wellbeing. The motivations of SNS are subdivided into emotional motive (entertainment and fantasy) and cognitive motive (information share burden and challenge burden) based on the use and gratifications theory. The addiction of SNS is subdivided into time tolerance, withdrawal symptoms, interruption, and barrier of living. The data used in this study were collected from 286 SNS users through surveys. The data analysis in this study was performed using AMOS 17.0, and we used SEM(Structural Equation Modeling) methods in order to test the research model. The result shows that the emotional motive(entertainment and fantasy) and cognitive motive(information share burden and challenge burden) have an effect on the addiction of SNS. Especially emotional motive such as entertainment and users' fantasy toward SNS is an important factor that can cause SNS addiction. The addiction of SNS such as time tolerance, withdrawal symptoms, interruption, and barrier of living has an effect on the decline in the subjective wellbeing. Our result show that social tie partially moderates the relationship SNS addiction and decline in the subjective wellbeing. In addition, social tie between interruption of SNS and decline in the subjective wellbeing is an important moderating factor. The results focuses on the understanding toward relationship between SNS addiction based on the online and decline in the subjective wellbeing in the real world. The findings of this study also provides theoretical as well as practical implications which reflect the major features of SNS, and moderating effects of social tie based on the social capital.

  • PDF

An Empirical Study of Discontinuous Use Intention on SNS: From a Perspective of Society Comparison Theory (사회비교이론 관점에서 살펴본 SNS 이용중단 의도)

  • Cha, Kyung Jin;Lee, Eun Mok
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.3
    • /
    • pp.59-77
    • /
    • 2015
  • Social networking sites (SNS), such as Facebook, provide abundant social comparison opportunities. Given the widespread use of SNSs, the purpose of the present study was to examine the impact of exposure to social media-based social comparison on user's negative emotions and discontinuous use intention on SNS. We present evidence that under the use of SNS, social comparison activities diverge into three patterns, with explicit self-evaluation desire made against similar target (lateral comparison), self-defense desire made against less fortunate target (downward comparison), and self-enhancement desire made with more fortunate target (upward comparison). Such social comparison processes frequently arise, as people are increasingly using on SNSs, the downward contacts ameliorating self-esteem with positive emotions, but the upward contacts and standard contacts with lateral status enabling a person to compare his or her situation with others and simultaneously increase negative emotions due to its differences with others. In other words, as people increasingly relying on SNSs for a variety of everyday tasks, they risk overexposure to upward or standard social comparison information that may have a cumulative detrimental impact on future intention on SNS use. This study with survey with 209 SNS users found that these negative emotions lead to negative fatigue (attitude) and then discontinuous use intention (behavior) on SNS. Our findings are among the first to explicitly examine discontinuous use intention on SNS using social comparison theory and our results are consistent with those of past research showing that upward social comparisons can be detrimental.