• Title/Summary/Keyword: network synchronization

Search Result 563, Processing Time 0.03 seconds

Time Synchronization over SpaceWire Network using Hop Count Information (홉 카운트 정보를 이용한 스페이스와이어 네트워크 시각동기화 방안)

  • Ryu, Sang-Moon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.715-718
    • /
    • 2016
  • SpaceWire invented for on-board data handling in a spacecraft has Time-Code defined for time synchronization over SpaceWire network. Delay and jitter of the transmission of Time-Code caused when a Time-Code travels through a network are the main reasons of time synchronization error. This work proposes a scheme that can reduce the time synchronization error by using extended Time-Codes. The proposed scheme can remove both transmission jitter and transmission delay. The scheme will be validated in a simulation environment built with OMNeT++.

  • PDF

A Dynamic Synchronization Method for Multimedia Delivery and Presentation based on QoS (QoS를 이용한 동적 멀티미디어 전송 및 프리젠테이션 동기화 기법)

  • 나인호;양해권;고남영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.2
    • /
    • pp.145-158
    • /
    • 1997
  • Method for synchronizing multimedia data is needed to support continuous transmission of multimedia data through a network in a bounded time and it also required for supporting continuous presentation of multimedia data with the required norminal playout rate in distributed network environments. This paper describes a new synchronization method for supporting delay-sensitive multimedia Presentation without degration of Quality of services of multimedia application. It mainly aims to support both intermedia and intermedia synchronization by absorbing network variations which may cause skew or jitter. In order to remove asynchonization problems, we make use of logical time system, dynamic buffer control method, and adjusting synchronization intervals based on the quality of services of a multimedia. It might be more suitable for working on distribute[1 multimedia systems where the network delay variation is changed from time to time and no global clock is supported. And it also can effectively reduce the amount of buffer requirements needed for transfering multimedia data between source and destination system by adjusting synchronization intervals with acceptable packet delay limits and packet loss rates.

  • PDF

A Distributed Frequency Synchronization Technique for OFDMA-Based Mesh Networks Using Bio-Inspired Algorithm (Bio-inspired 알고리즘을 이용한 OFDMA 기반 메쉬 네트워크의 분산 주파수 동기화 기법)

  • Yoo, Hyun-Jong;Lee, Mi-Na;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1022-1032
    • /
    • 2012
  • In OFDMA-based wireless mesh networks, synchronization of carrier frequencies among adjacent nodes is known to be difficult. In this paper, a distributed synchronization technique is proposed to solve the synchronization problem in OFDMA-based wireless mesh networks by using the bio-inspired algorithm. In the proposed approach, carrier frequencies of all nodes in a mesh network are converged into one frequency by locally synchronizing the frequencies of adjacent nodes. It may take a long time to be converged in some topologies since the convergence characteristic of carrier frequencies in a mesh network may vary depending on the size of the network and deployment of nodes. It is shown that fast frequency synchronization, not heavily depending on the topology, can be achieved through the proposed algorithm with an adjustable weight.

A Network Time Server using CPS (GPS를 이용한 네트워크 시각 서버)

  • 황소영;유동희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1004-1009
    • /
    • 2004
  • Precise time synchronization is a main technology in high-speed communications, parallel and distributed processing systems, Internet information industry and electronic commerce. Synchronized clocks are useful for many leasers. Often a distributed system is designed to realize some synchronized behavior, especially in real-time processing in factories, aircraft, space vehicles, and military applications. Nowadays, time synchronization has been compulsory thing as distributed processing and network operations are generalized. A network time server obtains, keeps accurate and precise time by synchronizing its local clock to standard reference time source and distributes time information through standard time synchronization protocol. This paper describes design issues and implementation of a network time server for time synchronization especially based on a clock model. The system uses GPS (Global Positioning System) as a standard reference time source and offers UTC (universal Time coordinated) through NTP (Network Time protocol). Implementation result and performance analysis are also presented.

Cooperative Analog and Digital (CANDI) Time Synchronization for Large Multihop Network (다중 홉 네트워크를 위한 디지털 및 아날로그 협동 전송 시간 동기화 프로토콜)

  • Cho, Sung-Hwan;Ingram, Mary Ann
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1084-1093
    • /
    • 2012
  • For large multihop networks, large time synchronization (TS) errors can accumulate with conventional methods, such as TPSN, RBS, and FTSP, since they need a large number of hops to cover the network. In this paper, a method combining Concurrent Cooperative Transmission (CCT) and Semi- Cooperative Spectrum Fusion (SCSF) is proposed to reduce the number of hops to cover the large network. In CCT, cooperating nodes transmit the same digitally encoded message in orthogonal channels simultaneously, so receivers can benefit from array and diversity gains. SCSF is an analog cooperative transmission method where different cooperators transmit correlated information simultaneously. The two methods are combined to create a new distributed method of network TS, called the Cooperative Analog and Digital (CANDI) TS protocol, which promises significantly lower network TS errors in multi-hop networks. CANDI and TPSN are compared in simulation for a line network.

Clock Synchronization in Wireless Embedded Applications (무선 임베디드 환경에서의 시간 동기화)

  • No, Jin-Hong;Hong, Young-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.6
    • /
    • pp.668-675
    • /
    • 2005
  • With the proliferation of wireless network and the advances of the embedded systems, the traditional distributed systems begin to include the wireless embedded systems. Clock synchronization in the distributed systems is one of the major issues that should be considered for diverse Purposes including synchronization, ordering, and consistency. Many clock synchronization algorithms have been proposed over the years. Since clock synchronization in wireless embedded systems should consider the low bandwidth of a network and the poor resources of a system, most traditional algorithms cannot be applied directly. We propose a clock synchronization algorithm in wireless embedded systems, extending IEEE 802.11 standard. The proposed algorithm can not only achieve high precision by loosening constraints and utilizing the characteristics of wireless broadcast but also provide continuous time synchronization by tolerating the message losses. In master/slave structure the master broadcasts the time information and the stave computes the clock skew and the drift to estimate the synchronized time of the master. The experiment results show that the achieved standard deviation by the Proposed scheme is within the bound of about 200 microseconds.

A Study and Implementation of Network Synchronization Module for Wired and Wireless based Multimedia Embedded Systems (유무선 기반 멀티미디어 임베디드 시스템을 위한 네트워크 동기화 모듈 연구 및 구현)

  • Kim, Hong-Kyu;Moon, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1198-1206
    • /
    • 2007
  • It is common to use PC or Digital picture frame in stand-alone fashion to view images, movies, or to listen MP3 musics which are considered as multimedia contents, However, such existing methods have weakness for expanding network requirements or augmenting extra data, in such case inevitably requiring external devices. With keeping in mind for such expansion, in this study, we have suggested a new concepts of network module which may utilize an image server for data transmission, in the proposed module, data alarm packet was defined for alerting incoming data from the image server and it became possible to synchronize between the image server and device not only in wired but also in wireless environments through UART. The method consists of a control module for an image server and a synchronization module between the server and the device. We have also tested the feasibility for future commercial usages such as advertisements through performance evaluations.

Architectures for Arbitrarily Connected Synchronization Networks

  • William C. Lindsey;Chen, Jeng-Hong
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.89-98
    • /
    • 1999
  • In a synchronization (sync) $network^1$containing N nodes, it is shown (Theorem 1c) that an arbitrarily connected sync network & is the union of a countable set of isolated connecting sync networks${&_i,i= 1,2,.., L}, I.E., & = \bigcup_{I=1}^L&_i$ It is shown(Theorem 2e) that aconnecting sync network is the union of a set of disjoint irreducible subnetworks having one or more nodes. It is further shown(Theorem 3a) that there exists at least one closed irreducible subnetwork in $&_i$. It is further demonstrated that a con-necting sync network is the union of both a master group and a slave group of nodes. The master group is the union of closed irreducible subnetworks in $&_i$. The slave group is the union of non-colsed irre-ducible subnetworks in $&_i$. The relationships between master-slave(MS), mutual synchronous (MUS) and hierarchical MS/MUS ent-works are clearly manifested [1]. Additionally, Theorem 5 shows that each node in the slave group is accessible by at least on node in the master group. This allows one to conclude that the synchro-nization information avilable in the master group can be reliably transported to each node in the slave group. Counting and combinatorial arguments are used to develop a recursive algorithm which counts the number $A_N$ of arbitrarily connected sync network architectures in an N-nodal sync network and the number $C_N$ of isolated connecting sync network in &. EXamples for N=2,3,4,5 and 6 are provided. Finally, network examples are presented which illustrate the results offered by the theorems. The notation used and symbol definitions are listed in Appendix A.

  • PDF

Time Synchronization by Consecutive Broadcast for Wireless Sensor Networks (연속 방송 패킷 전송에 의한 무선 센서 네트워크의 시각 동기화)

  • Bae, Shi-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.19C no.3
    • /
    • pp.209-214
    • /
    • 2012
  • Time synchronization is important role in a network, especially in Wireless Sensor Network (WSN) which is required for time-critical applications such as surveillance, tracking, data fusion and scheduling. Time synchronization in WSN should meet the other different requirements than the one in other networks because WSN has critical resource constraints, especially power consumption. This paper presents a new time synchronization scheme for WSN, which is energy efficient by reducing communication overhead. Simulation test shows this new scheme has better energy efficiency and performance of accuracy than existing schemes proposed previously.

Synchronization Method for Continuous Play among Multimedia Devices (다중 기기에서 이어 보기를 위한 동기화 기법)

  • Kang, Mi-Ran;Kim, Se-Young;Kim, Young-Il;Kim, Dae-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.543-551
    • /
    • 2011
  • Recently various handheld multimedia devices are spreading, and users want to share media contents across their own multiple devices. Conventional synchronization techniques for N-screen services can continuously play contents by switching from an initial device to a new device. In this case, even if a new device plays continuously contents, the initial device stops playing them. In this paper, we propose a synchronization technique in which multiple devices can share and continuously play same contents simultaneously by gathering and passing URI and current play-time of the contents. The proposed synchronization technique is built on UPnP and DLNA, and tested by implementing a wireless home media network system.