• Title/Summary/Keyword: network recovery degree

Search Result 18, Processing Time 0.031 seconds

A Novel Method for Survivability Test Based on End Nodes in Large Scale Network

  • Ming, Liang;Zhao, Gang;Wang, Dongxia;Huang, Minhuan;Li, Xiang;Miao, Qing;Xu, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.620-636
    • /
    • 2015
  • Survivability is a necessary property of network system in disturbed environment. Recovery ability is a key actor of survivability. This paper concludes network survivability into a novel composite metric, i.e. Network Recovery Degree (NRD). In order to measure this metric in quantity, a concept of Source-Destination Pair (SD Pair), is created to abstract end-to-end activity based on end nodes in network, and the quality of SD Pair is also used to describe network performance, such as connectivity, quality of service, link degree, and so on. After that, a Survivability Test method in large scale Network based on SD pairs, called STNSD, is provided. How to select SD Pairs effectively in large scale network is also provided. We set up simulation environment to validate the test method in a severe destroy scenario and evaluate the method scalability in different large scale network scenarios. Experiment and analysis shows that the metric NRD correctly reflects the effort of different survivability strategy, and the proposed test method STNSD has good scalability and can be used to test and evaluate quantitative survivability in large scale network.

Neural Plasticity after Brain Injury (뇌 손상 후 신경 가소성)

  • Kwon, Young-Shil;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.791-797
    • /
    • 2001
  • After brain injury, patients show a wide range in the degree of recovery. By a variety of mechanisms, the human brain is constantly undergoing plastic changes. Spontaneous recovery from brain injury in the chronic stage omes about because of plasticity. The brain regions are altered. resulting in functionally modified cortical network. This review cnsidered the neural plasticity from cellular and molecular mechanisms of synapse formation to behavioural recovery from brain injury in elderly humans. The stimuli required to elicit plasticity are thought to be activity-dependent elements. especially exercise and learning. Knowledge about the physiology of brain plasticity has led to the development of methods for rehabilitation.

  • PDF

Development of Wireless Neuro-Modulation System for Stroke Recovery Using ZigBee Technology (ZigBee를 이용한 뇌졸중 치료용 무선 전기 자극기 개발)

  • Kim, G.H.;Ryu, M.H.;Shin, Y.I.;Kim, H.I.;Kim, N.G.;Yang, Y.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2007
  • Stroke is the second most significant disease leading to death in Korea. The conventional therapeutic approach is mainly based on physical training, however, it usually provides the limited degree of recovery of the normal brain function. The electric stimulation therapy is a novel and candidate approach with high potential for stroke recovery. The feasibility was validated by preliminary rat experiments in which the motor function was recovered up to 80% of the normal performance level. It is thought to improve the neural plasticity of the nerve tissues around the diseased area in the stroked brain. However, there are not so much research achievements in the electric stimulation for stroke recovery as for the Parkinson's disease or Epilepsy. This study aims at the developments of a wireless variable pulse generator using ZigBee communication for future implantation into human brain. ZigBee is widely used in wireless personal area network (WPAN) and home network applications due to its low power consumption and simplicity. The developed wireless pulse generator controlled by ZigBee can generate various electric stimulations without any distortion. The electric stimulation includes monophasic and biphasic pulse with the variation of shape parameters, which can affect the level of recovery. The developed system can be used for the telerehabilitation of stroke patient by remote control of brain stimulation via ZigBee and internet. Furthermore, the ZigBee connection used in this study provides the potential neural signal transmission method for the Brain-Machine Interface (BMI).

Measurement of thermal properties by TPS-technique and thermal network analysis (TPS를 통한 열물성치 획득 및 네트워크모델을 이용한 열해석)

  • Yun, Tae-Sup;Kim, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.263-268
    • /
    • 2010
  • Thermal characterization of geomaterials has significant implication on the geothermal energy, disposal of nuclear wastes, geological sequestration of carbon dioxides and recovery of hydrocarbon resources. Heat transfer in multiphase materials is dominated by the thermal conductivity of consisting components, porosity, degree of saturation and overburden pressure, which have been investigated by the empirical correlation at macro-scale. The thermal measurement by Transient Plane Source (TPS) and associated algorithm for interpretation of thermal behavior in geomaterials corroborate the robustness of sensing techniques. The method simultaneously provides thermal conductivity, diffusivity and volumetric heat capacity. The newly introduced thermal network model enables estimating thermal conductivity of geomaterials subjected to the effective stress, which has not been evaluated using previous thermal models. The proposed methods shows the applicability of reliability of TPS technique and thermal network model.

  • PDF

Cortical Thickness of Resting State Networks in the Brain of Male Patients with Alcohol Dependence (남성 알코올 의존 환자 대뇌의 휴지기 네트워크별 피질 두께)

  • Lee, Jun-Ki;Kim, Siekyeong
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Objectives It is well known that problem drinking is associated with alterations of brain structures and functions. Brain functions related to alcohol consumption can be determined by the resting state functional connectivity in various resting state networks (RSNs). This study aims to ascertain the alcohol effect on the structures forming predetermined RSNs by assessing their cortical thickness. Methods Twenty-six abstinent male patients with alcohol dependence and the same number of age-matched healthy control were recruited from an inpatient mental hospital and community. All participants underwent a 3T MRI scan. Averaged cortical thickness of areas constituting 7 RSNs were determined by using FreeSurfer with Yeo atlas derived from cortical parcellation estimated by intrinsic functional connectivity. Results There were significant group differences of mean cortical thicknesses (Cohen's d, corrected p) in ventral attention (1.01, < 0.01), dorsal attention (0.93, 0.01), somatomotor (0.90, 0.01), and visual (0.88, 0.02) networks. We could not find significant group differences in the default mode network. There were also significant group differences of gray matter volumes corrected by head size across the all networks. However, there were no group differences of surface area in each network. Conclusions There are differences in degree and pattern of structural recovery after abstinence across areas forming RSNs. Considering the previous observation that group differences of functional connectivity were significant only in networks related to task-positive networks such as dorsal attention and cognitive control networks, we can explain recovery pattern of cognition and emotion related to the default mode network and the mechanisms for craving and relapse associated with task-positive networks.

Providing survivability for virtual networks against substrate network failure

  • Wang, Ying;Chen, Qingyun;Li, Wenjing;Qiu, Xuesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4023-4043
    • /
    • 2016
  • Network virtualization has been regarded as a core attribute of the Future Internet. In a network virtualization environment (NVE), multiple heterogeneous virtual networks can coexist on a shared substrate network. Thus, a substrate network failure may affect multiple virtual networks. In this case, it is increasingly critical to provide survivability for the virtual networks against the substrate network failures. Previous research focused on mechanisms that ensure the resilience of the virtual network. However, the resource efficiency is still important to make the mapping scheme practical. In this paper, we study the survivable virtual network embedding mechanisms against substrate link and node failure from the perspective of improving the resource efficiency. For substrate link survivability, we propose a load-balancing and re-configuration strategy to improve the acceptance ratio and bandwidth utilization ratio. For substrate node survivability, we develop a minimum cost heuristic based on a divided network model and a backup resource cost model, which can both satisfy the location constraints of virtual node and increase the sharing degree of the backup resources. Simulations are conducted to evaluate the performance of the solutions. The proposed load balancing and re-configuration strategy for substrate link survivability outperforms other approaches in terms of acceptance ratio and bandwidth utilization ratio. And the proposed minimum cost heuristic for substrate node survivability gets a good performance in term of acceptance ratio.

An Evolution Model of Rumor Spreading Based on WeChat Social Circle

  • Wang, Lubang;Guo, Yue
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1422-1437
    • /
    • 2019
  • With the rapid development of the Internet and the Mobile Internet, social communication based on the network has become a life style for many people. WeChat is an online social platform, for about one billion users, therefore, it is meaningful to study the spreading and evolution mechanism of the rumor on the WeChat social circle. The Rumor was injected into the WeChat social circle by certain individuals, and the communication and the evolution occur among the nodes within the circle; after the refuting-rumor-information injected into the circle, subsequently,the density of four types of nodes, including the Susceptible, the Latent, the Infective, and the Recovery changes, which results in evolving the WeChat social circle system. In the study, the evolution characteristics of the four node types are analyzed, through construction of the evolution equation. The evolution process of the rumor injection and the refuting-rumor-information injection is simulated through the structure of the virtual social network, and the evolution laws of the four states are depicted by figures. The significant results from this study suggest that the spreading and evolving of the rumors are closely related to the nodes degree on the WeChat social circle.

The Effect of Road Networks on Urban Resilience in Flooding (도시침수 시 도로네트워크가 도시회복도에 미치는 영향 분석)

  • Hyung Jun Park;Dong Hyun Kim;Hyun Jung Lee;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.85-98
    • /
    • 2023
  • Flood is one of the most frequent natural disasters worldwide. In Korea, the probability of urban flooding is greatly increasing due to complex factors such as global warming, an increase in impervious areas, and limitations in expanding water supply facilities in existing urban areas. However, large-scale civil engineering works to prevent urban inundation are socially and economically difficult to obtain national consent. Recently the importance of resilience, which is the ability to return to the original state after a disaster through rapid recovery while preparing for natural disasters to a level that the local community can afford socially and economically, is increasing. Accordingly, various studies on urban resilience have been conducted, but the resilience measurement method related to the lifeline that provides essential services of the city is insufficient. However, among lifelines, road networks are important facilities for the transportation of recovery resources and rapid recovery in the event of a natural disaster, so road networks are a major factor that must be considered when measuring the degree of recovery of a city in the field of natural disasters. Therefore, this study proposes a recovery evaluation method considering the characteristics of resilience and road networks in the urban flooding field and analyzes the effect of road networks on urban resilience.

An Adaptive FEC Algorithm for Mobile Wireless Networks (이동 무선 네트워크의 전송 성능 향상을 위한 적응적 FEC 알고리즘)

  • Ahn, Jong-Suk;John Heidmann
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.563-572
    • /
    • 2002
  • Wireless mobile networks tend to drop a large portion of packets due to propagation errors rather than congestion. To Improve reliability over noisy wireless channels, wireless networks can employ forward error correction (FEC) techniques. Static FEC algorithms, however, can degrade the performance by poorly matching their overhead to the degree of the underlying channel error, especially when the channel path loss rate fluctuates widely. This paper investigates the benefits of an adaptable FEC mechanism for wireless networks with severe packet loss by analytical analysis or measurements over a real wireless network called sensor network. We show that our adaptive FEC named FECA (FEC-level Adaptation) technique improves the performance by dynamically tuning FEC strength to the current amount of wireless channel loss. We quantify these benefits through a hybrid simulation integrating packet-level simulation with bit-level details and validate that FECA keeps selecting the appropriate FEC-level for a constantly changing wireless channel.

An Adaptive FEC Algorithm for Sensor Networks with High Propagation Errors (전파 오류가 높은 센서 네트워크를 위한 적응적 FEC 알고리즘)

  • 안종석
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.755-763
    • /
    • 2003
  • To improve performance over noisy wireless channels, mobile wireless networks employ forward error correction(FEC) techniques. The performance of static FEC algorithms, however, degrades by poorly matching the overhead of their correction code to the degree of the fluctuating underlying channel error. This paper proposes an adaptive FEC technique called FECA(FEC-level Adaptation), which dynamically tunes FEC strength to the currently estimated channel error rate at the data link layer. FECA is suitable for wireless networks whose error rate is high and slowly changing compared to the round-trip time between two communicating nodes. One such example network would be a sensor network in which the average bit error rate is higher than $10^{-6}$ and the detected error rate at one time lasts a few hundred milliseconds on average. Our experiments show that FECA performs 15% in simulations with theoretically modeled wireless channels and in trace-driven simulations based on the data collected from real sensor networks better than any other static FEC algorithms.