• Title/Summary/Keyword: network lifespan

Search Result 40, Processing Time 0.025 seconds

A Study on Improvement of Energy Efficiency for LEACH Protocol in WSN (WSN에서 LEACH 프로토콜의 에너지 효율 향상에 관한 연구)

  • Lee, Won-Seok;Ahn, Tae-Won;Song, ChangYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Wireless sensor network(WSN) is made up of a lot of battery operated inexpensive sensors that, once deployed, can not be replaced. Therefore, energy efficiency of WSN is essential. Among the methods for energy efficiency of the network, clustering algorithms, which divide a WSN into multiple smaller clusters and separate all sensors into cluster heads and their associated member nodes, are very energy efficient routing technique. The first cluster-based routing protocol, LEACH, randomly elects the cluster heads in accordance with the probability. However, if the distribution of selected cluster heads is not good, uniform energy consumption of cluster heads is not guaranteed and it is possible to decrease the number of active nodes. Here we propose a new routing scheme that, by comparing the remaining energy of all nodes in a cluster, selects the maximum remaining energy node as a cluster head. Because of decrease in energy gap of nodes, the node that was a cluster head operates as a member node much over. As a result, the network lifespan is increased and more data arrives at base station.

Development of Steel Composite Cable Stayed Bridge Weigh-in-Motion System using Artificial Neural Network (인공신경망을 이용한 강합성 사장교 차량하중분석시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan;Lee, Jungwhee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.799-808
    • /
    • 2008
  • The analysis of vehicular loads reflecting the domestic traffic circumstances is necessary for the development of adequate design live load models in the analysis and design of cable-supported bridges or the development of fatigue load models to predict the remaining lifespan of the bridges. This study intends to develop an ANN(artificial neural network)-based Bridge WIM system and Influence line-based Bridge WIM system for obtaining information concerning the loads conditions of vehicles crossing bridge structures by exploiting the signals measured by strain gauges installed at the bottom surface of the bridge superstructure. This study relies on experimental data corresponding to the travelling of hundreds of random vehicles rather than on theoretical data generated through numerical simulations to secure data sets for the training and test of the ANN. In addition, data acquired from 3 types of vehicles weighed statically at measurement station and then crossing the bridge repeatedly are also exploited to examine the accuracy of the trained ANN. The results obtained through the proposed ANN-based analysis method, the influence line analysis method considering the local behavior of the bridge are compared for an example cable-stayed bridge. In view of the results related to the cable-stayed bridge, the cross beam ANN analysis method appears to provide more remarkable load analysis results than the cross beam influence line method.

Marital Status of Elderly: Does it Really Matter for Health? (노인의 결혼지위 점유에 따른 건강차이: 노년기 사회적 관계망의 매개효과를 중심으로)

  • Cha, Seung-Eun
    • 한국노년학
    • /
    • v.27 no.2
    • /
    • pp.371-392
    • /
    • 2007
  • Marital status has drawn much attention as previous studies have been pointed it out as a key factor of health. Nonetheless, systematic studies on elderly marital status and health have been quite limited, for most researches have neglected the varying effects of marital status on health over the lifespan and mainly focused on midlife. This study, using nationwide survey on elderly population, attempts to discover the health differentials between widowed and married elderly and explain the differences though the structure and function of their social network. The results reveal that the magnitudes of marital status effects were differed by dimensions of health. The widowed were more likely to be unhappy than married, even after controlling the socio-demographic characteristics. In physical health, however, the health differences between widowed and married were less noticeable or disappeared, as sex, age and other structure factors were considered. Furthermore, the strength of social network factors affecting the physical and mental health of elderly turned out to be different between married and widowed: widowed were more likely than married to be affected by the contact with children and less likely to be affected by contact with friends/relatives. Such results had both positive and negative impact on physical and mental health of widowed. This may imply the difference in pathways of regulating health among the married and widowed elderly.

Management of Infrastructure(Road) Based On Asset Value (자산가치 기반의 교통인프라 유지관리)

  • Dong-Joo Kim;Woo-Seok Kim;Yong-Kang Lee;Hoon Yoo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.100-107
    • /
    • 2024
  • Currently, in Korea, due to the rapid aging and deterioration of facilities, the minimum Maintenance Level and Performance Level' of facilities are required by the 'Facility Safety Act' or 'Infrastructure Management Act'. Since infrastructure assets have a long lifespan and the pattern of deterioration over time is complex, it is very difficult to maintain infrastructure as 'minimum maintenance state' or 'minimum performance state' by the current way of management. 'Asset Management' shall be performed not only by a technical perspective, but also by an accounting perspective such as cost and asset value. However, due to lack of awareness of 'asset management' among stakeholder, only technical perspective management is being carried out in practice. In order to effectively manage infrastructure assets, complex consideration of various asset value factors such as budget and service as well as safety and durability are required. In this paper, we presented a theory to evaluate and quantify the road network value for efficient asset management of the road network. We also presented a method of simulation to apply the theory presented in this paper. Through simulation and the results derived from this study, it is possible to specify the budget for the future national asset management, and to optimize the strategy for the management of old road facilities.

Clock Synchronization for Periodic Wakeup in Wireless Sensor Networks (무선 센서 망에서 주기적인 송수신 모듈 활성화를 위한 클락 동기)

  • Kim, Seung-Mok;Park, Tae-Keun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.348-357
    • /
    • 2007
  • One of the major issues in recent researches on wireless sensor networks is to reduce energy consumption of sensor nodes operating with limited battery power, in order to lengthen their lifespan. Among the researches, we are interested in the schemes in which a sensor node periodically turns on and off its radio and requires information on the time when its neighbors will wake up (or turn on). Clock synchronization is essential for wakeup scheduling in such schemes. This paper proposes three methods based on the asynchronous averaging algorithm for clock synchronization in sensor nodes which periodically wake up: (1) a fast clock synchronization method during an initial network construction period, (2) a periodic clock synchronization method for saving energy consumption, and (3) a decision method for switching the operation mode of sensor nodes between the two clock synchronization methods. Through simulation, we analyze maximum clock difference and the number of messages required for clock synchronization.

  • PDF

Manipulating Anisotropic Filler Structure in Polymer Composite for Heat Dissipating Materials: A Mini Review (방열소재로의 응용을 위한 고분자 복합소재 내 이방성 필러 구조 제어 연구동향)

  • Seong-Bae, Min;Chae Bin, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.431-438
    • /
    • 2022
  • Efficient heat dissipation in current electronics is crucial to ensure the best performance and lifespan of the devices along with the users' safety. Materials with high thermal conductivity are often used to dissipate the generated heat from the electronics to the surroundings. For this purpose, polymer composites have been attracted much attention as they possess advantages rooted from both polymer matrix and thermally conductive filler. In order to meet the thermal conductivity required by relevant industries, composites with high filler loadings (i.e., >60 vol%) have been fabricated. At such high filler loadings, however, composites lose benefits originated from the polymer matrix. To achieve high thermal conductivity at a relatively low filler loading, therefore, constructing the heat conduction pathway by controlling filler structure within the composites may represent a judicious strategy. To this end, this review introduces several recent approaches to manufacturing heat dissipating materials with high thermal conductivity by manipulating thermally conductive filler structures in polymer composites.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.

Efforts against Cybersecurity Attack of Space Systems

  • Jin-Keun Hong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.437-445
    • /
    • 2023
  • A space system refers to a network of sensors, ground systems, and space-craft operating in space. The security of space systems relies on information systems and networks that support the design, launch, and operation of space missions. Characteristics of space operations, including command and control (C2) between space-craft (including satellites) and ground communication, also depend on wireless frequency and communication channels. Attackers can potentially engage in malicious activities such as destruction, disruption, and degradation of systems, networks, communication channels, and space operations. These malicious cyber activities include sensor spoofing, system damage, denial of service attacks, jamming of unauthorized commands, and injection of malicious code. Such activities ultimately lead to a decrease in the lifespan and functionality of space systems, and may result in damage to space-craft and, lead to loss of control. The Cybersecurity Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) matrix, proposed by Massachusetts Institute of Technology Research and Engineering (MITRE), consists of the following stages: Reconnaissance, Resource Development, Initial Access, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, Command & Control, Exfiltration, and Impact. This paper identifies cybersecurity activities in space systems and satellite navigation systems through the National Institute of Standards and Technology (NIST)'s standard documents, former U.S. President Trump's executive orders, and presents risk management activities. This paper also explores cybersecurity's tactics attack techniques within the context of space systems (space-craft) by referencing the Sparta ATT&CK Matrix. In this paper, security threats in space systems analyzed, focusing on the cybersecurity attack tactics, techniques, and countermeasures of space-craft presented by Space Attack Research and Tactic Analysis (SPARTA). Through this study, cybersecurity attack tactics, techniques, and countermeasures existing in space-craft are identified, and an understanding of the direction of application in the design and implementation of safe small satellites is provided.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection (균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 )

  • Seungbo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.113-119
    • /
    • 2023
  • Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.