• Title/Summary/Keyword: network functions

Search Result 2,338, Processing Time 0.027 seconds

The Modeling of Chaotic Nonlinear System Using Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;You, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.635-639
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the modeling of chaotic nonlinear systems. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the modeling performance for chaotic nonlinear systems and compare it with those of the FNN and the WFM.

  • PDF

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

Overlay Multicast Mechanism Supporting Differentiated QoS According to Service Level and User Environment over NGN (차세대네트워크 환경에서 서비스 등급 및 사용자 환경에 따른 차별화된 QoS를 지원하는 오버레이 멀티캐스트)

  • Rhee, Bo-Young;Cho, Sung-Chol;Han, Sun-Young
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.557-566
    • /
    • 2008
  • NGN(Next Generation Network) is a communication network which can make use of broadband and QoS-enabled transport technologies. One of the main service issues over NGN is a multimedia service, such as IPTV, using a multicast method. And overlay multicast technology is one of the promising solutions instead of traditional multicast technology which has a few problems, and supports flexibility and scalability for multicast services. Also, the main controversial topic in NGN and overlay multicast is QoS. In the present paper, we designed an agent in each receiver's network, and a manager which is in a source network and which manages the whole multicast network. Both of them are communicating with each other and applying resource policies to their multicast network. This mechanism enables overlay multicast to support QoS, focusing on RACF(Resource and Admission Control Functions) in NGN QoS architecture.

Urban Mobility Simulation (도시 교통 시뮬레이션)

  • Kim, Kyoung-Ah;Kim, Duk-Su;Yoon, Sung-Eui
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.4
    • /
    • pp.23-30
    • /
    • 2011
  • We propose an intelligent ribbon road network for automatic vehicle simulation, and a real-time algorithm for large-scale, realistic traffic simulation based on artificial energy functions. Our method reconstructs a road network automatically from both GIS (Geographic Information System) real-world data and synthetic models. Such automatic road network helps us to easily simulate almost every possible scenario such as intersections, ramps, etc. In order to simulate agents' movement, we design car-environment interaction energy and car-car interaction energy functions. Car agents move along the road network according to the proposed energy functions while avoiding collisions with other car agents.

A Novel Kernel SVM Algorithm with Game Theory for Network Intrusion Detection

  • Liu, Yufei;Pi, Dechang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4043-4060
    • /
    • 2017
  • Network Intrusion Detection (NID), an important topic in the field of information security, can be viewed as a pattern recognition problem. The existing pattern recognition methods can achieve a good performance when the number of training samples is large enough. However, modern network attacks are diverse and constantly updated, and the training samples have much smaller size. Furthermore, to improve the learning ability of SVM, the research of kernel functions mainly focus on the selection, construction and improvement of kernel functions. Nonetheless, in practice, there are no theories to solve the problem of the construction of kernel functions perfectly. In this paper, we effectively integrate the advantages of the radial basis function kernel and the polynomial kernel on the notion of the game theory and propose a novel kernel SVM algorithm with game theory for NID, called GTNID-SVM. The basic idea is to exploit the game theory in NID to get a SVM classifier with better learning ability and generalization performance. To the best of our knowledge, GTNID-SVM is the first algorithm that studies ensemble kernel function with game theory in NID. We conduct empirical studies on the DARPA dataset, and the results demonstrate that the proposed approach is feasible and more effective.

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.

A Binary Classifier Using Fully Connected Neural Network for Alzheimer's Disease Classification

  • Prajapati, Rukesh;Kwon, Goo-Rak
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • Early-stage diagnosis of Alzheimer's Disease (AD) from Cognitively Normal (CN) patients is crucial because treatment at an early stage of AD can prevent further progress in the AD's severity in the future. Recently, computer-aided diagnosis using magnetic resonance image (MRI) has shown better performance in the classification of AD. However, these methods use a traditional machine learning algorithm that requires supervision and uses a combination of many complicated processes. In recent research, the performance of deep neural networks has outperformed the traditional machine learning algorithms. The ability to learn from the data and extract features on its own makes the neural networks less prone to errors. In this paper, a dense neural network is designed for binary classification of Alzheimer's disease. To create a classifier with better results, we studied result of different activation functions in the prediction. We obtained results from 5-folds validations with combinations of different activation functions and compared with each other, and the one with the best validation score is used to classify the test data. In this experiment, features used to train the model are obtained from the ADNI database after processing them using FreeSurfer software. For 5-folds validation, two groups: AD and CN are classified. The proposed DNN obtained better accuracy than the traditional machine learning algorithms and the compared previous studies for AD vs. CN, AD vs. Mild Cognitive Impairment (MCI), and MCI vs. CN classifications, respectively. This neural network is robust and better.

QoS Guaranteed Secure Network Service Realization using Global User Management Framework (GUMF);Service Security Model for Privacy

  • Choi, Byeong-Cheol;Kim, Kwang-Sik;Seo, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1586-1589
    • /
    • 2005
  • GUMF (Global User Management Framework) that is proposed in this research can be applied to next generation network such as BcN (Broadband convergence Network), it is QoS guaranteed security framework for user that can solve present Internet's security vulnerability. GUMF offers anonymity for user of service and use the user's real-name or ID for management of service and it is technology that can realize secure QoS. GUMF needs management framework, UMS (User Management System), VNC (Virtual Network Controller) etc. UMS consists of root UMS in country dimension and Local UMS in each site dimension. VNC is network security equipment including VPN, QoS and security functions etc., and it achieves the QoSS (Quality of Security Service) and CLS(Communication Level Switching) functions. GUMF can offer safety in bandwidth consumption attacks such as worm propagation and DoS/DDoS, IP spoofing attack, and current most attack such as abusing of private information because it can offer the different QoS guaranteed network according to user's grades. User's grades are divided by 4 levels from Level 0 to Level 3, and user's security service level is decided according to level of the private information. Level 3 users that offer bio-information can receive secure network service that privacy is guaranteed. Therefore, GUMF that is proposed in this research can offer profit model to ISP and NSP, and can be utilized by strategy for secure u-Korea realization.

  • PDF

Applying Artificial Intelligence Based on Fuzzy Logic for Improved Cognitive Wireless Data Transmission: Models and Techniques

  • Ahmad AbdulQadir AlRababah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.13-26
    • /
    • 2023
  • Recently, the development of wireless network technologies has been advancing in several directions: increasing data transmission speed, enhancing user mobility, expanding the range of services offered, improving the utilization of the radio frequency spectrum, and enhancing the intelligence of network and subscriber equipment. In this research, a series of contradictions has emerged in the field of wireless network technologies, with the most acute being the contradiction between the growing demand for wireless communication services (on operational frequencies) and natural limitations of frequency resources, in addition to the contradiction between the expansions of the spectrum of services offered by wireless networks, increased quality requirements, and the use of traditional (outdated) management technologies. One effective method for resolving these contradictions is the application of artificial intelligence elements in wireless telecommunication systems. Thus, the development of technologies for building intelligent (cognitive) radio and cognitive wireless networks is a technological imperative of our time. The functions of artificial intelligence in prospective wireless systems and networks can be implemented in various ways. One of the modern approaches to implementing artificial intelligence functions in cognitive wireless network systems is the application of fuzzy logic and fuzzy processors. In this regard, the work focused on exploring the application of fuzzy logic in prospective cognitive wireless systems is considered relevant.

Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions (활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pureun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.