• 제목/요약/키워드: nerve electrode

검색결과 82건 처리시간 0.013초

소뇌교각 수술 중에 안면운동유발전위의 검사방법과 기능적 예측인자 (Facial Motor Evoked Potential Techniques and Functional Prediction during Cerebello-pontine Angle Surgery)

  • 백재승;박상구;김동준;박찬우;임성혁;이장호;조영국
    • 대한임상검사과학회지
    • /
    • 제50권4호
    • /
    • pp.470-476
    • /
    • 2018
  • 다중펄스경두개전기자극(mpTES)을 이용한 안면운동유발전위(FMEP)는 자유 진행 근전도와 직접적인 안면 신경 자극법의 한계점을 보완하고 소뇌교각 종양 수술 중에 안면 신경의 기능적인 완전성을 예측할 수 있다. 본 논문의 목적은 이 검사의 표준화된 검사방법과 안면 신경의 기능예측인자로서의 유용성을 알아보고 수술 후 중대한 후유증인 안면마비 발생률을 최소화하는 것이다. Mz (음극)-M3, M4 (양극) 전극으로 경두개전기자극을 주고 안면운동유발전위의 단일펄스반응(SPR)의 부재와 10 ms이상의 잠복기를 확인해서 직접적인 두개 외 말초 안면 근육 자극을 배제하고 구륜근(orbicularis oris)과 턱근(mentalis)에서 동시에 측정하면 구륜근에서만 측정했을 때보다 안면운동유발전위의 정확도와 성공률을 높일 수 있다. 본 논문에서는 안면운동유발전위의 50% 진폭감소를 경고기준으로 해서 수술 직후 안면 신경의 결과를 효과적으로 예측할 수 있었다. 결론적으로, 소뇌교각 종양 수술 중에 FMEP는 자유 진행 근전도와 직접적인 안면 신경 자극법과 더불어서 수술 후 중대한 후유증인 안면 마비 발생률을 최소화 할 수 있는 유용한 검사방법이다.

흰쥐에서 내측 편도핵의 전기 자극에 의한 췌액 분비 증가 기전 (Mechanism of Pancreatic Secretory Response to Electrical Stimulation of Medial Amygdaloid Nucleus in Rats)

  • 윤신희;한상준;조양혁
    • The Korean Journal of Physiology
    • /
    • 제23권2호
    • /
    • pp.401-408
    • /
    • 1989
  • This study was conducted to investigate whether an electrical stimulation of medial amygdaloid nucleus in rats increases pancreatic secretion. And an involvement of vagus nerve or plasma secretin in this process was also studied. In fasting rats anesthetized with urethane, a monopolar stainless steel electrode was stereotaxically inserted into the right medial amygdaloid nucleus. Pancreatic juice was collected for 20 minutes, during which physiological saline or 0.01 N HCI (0.18 ml/min) was perfused into the duodenum with or without bilateral subdiaphragmatic vagotomy. In the medial amygdaloid group, an electrical stimulation was continuously applied to the medial amygdaloid nucleus during the perfusion period. After collection of pancreatic juice, blood was drawn from the abdominal aorta for determination of the plasma secretin level. The results were as follows: 1) The electrical stimulaion of the medial amygdaloid nucleus did not influence the pancreatic secretion in response to intraduodenal saline perfusion. 2) The stimulation of the medial amygdaloid nucleus significantly increased the pancreatic secretory response (volume, bicarbonate output) to the intraduodenal 0.01 N HCI perfusion, and the increases were abolished by vagotomy. 3) The plasma secretin concentration after the intraduodenal 0.01 N HCI perfusion was higher than that after the saline perfusion. However, neither the electrical stimulation of the medial amygdaloid nucleus nor vagotomy affected the plasma secretin concentration during the intraduodenal perfusion with saline or 0.01 N HCI. It is, therefore, suggested that the medial amygdaloid nucleus facilitates the pancreatic secretion (volume, bicarbonate) elicited by intraduodenal HCI perfusion through the vagus nerve.

  • PDF

미노반규관(迷路半規管)과 외안사근(外眼斜筋)의 기능적(機能的) 관계(關係)에 관(關)하여 (Functional Relationship between the Vestibular Canals and the Extraocular Oblique Muscles)

  • 김재협
    • The Korean Journal of Physiology
    • /
    • 제6권2호
    • /
    • pp.49-56
    • /
    • 1972
  • This experiment was designed to explore specific functional relationship between the vestibular canals and the extraocular oblique muscles by observing the isometric tension responeses of the muscles to the selected vestibular canal excitation. The vestibular excitation was simulated by either stimulation of the individual canal nerve or endolymphatic fluid displacement in each canal. Each canal nerve was subjected to square wave pulses with a monopolar wire electrode placed closely to the ampullary nerve endings for electrical stimulation, and a fine stainless cannula was introduced into the each canal toward the ampulla and a minute amount $(0.5{\sim}3.5\;microliter)$ of fluid was injected in or ejected out by means of a microsyringe connected to the cannula to produce ampullopetal or ampullofugal displacement of endolymphatic fluid. The superior oblique muscle was contracted by the excitation of homolateral canals and was relaxed by contralateral canals. On the contrary, the inferior oblique was contracted by the contralateral canals and was relaxed by the homolateral canals. Summation of excitatory and inhibitory canal effects from the bilateral vestibular system was demonstrable on the tension changes of the oblique muscles. Excitation of either dual or triple canals of the unilateral vestibular system also caused summation effect on the tension response of the oblique pair; thus multiple signals from the different ampullary receptors seems to be converged into the relevant ocular motor muclei. Since the superior and inferior obliques are known to receive their motor fibers from the contralateral trochlear nuclei and intermediate nuclei of the homolateral oculomotor complex respectively, the above experimental evidences indicate that the ocular motor nuclei for oblique muscles receive excitatory signals from the contralateral vestibular canals and inhibitory signals from the homolateral canals.

  • PDF

산화주석을 기반으로 한 DMMP 후막가스센서 제작 (fabrication of DMMP Thick Film Gas Sensor Based on SnO2)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1217-1223
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is dimethyl methyl phosphonate(C$_3$ $H_{9}$ $O_3$P, DMMP) that is simulant gas of nerve gas. Sensing materials were Sn $O_2$ added a-Al$_2$ $O_3$ with 0∼20wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor device was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Total size of device was 7${\times}$10${\times}$0.6㎣. Crystallite size & phase identification and morphology of fabricated Sn $O_2$ powders were analyzed by X-ray diffraction and by a scanning electron microscope, respectively. Fabricated sensor was measured as flow type and resistance change of sensing material was monitored as real time using LabVIEW program. The best sensitivity was 75% at adding 4wt.% $\alpha$-Al$_2$ $O_3$, operating temperature 30$0^{\circ}C$ to DMMP 0.5ppm. Response and recovery time were about 1 and 3min., respectively. Repetition measurement was very good with $\pm$3% in full scale.TEX>$\pm$3% in full scale.

다채널기록법을 이용한 토끼 망막 신경절세포의 특성 분석 (Characterization of Rabbit Retinal Ganglion Cells with Multichannel Recording)

  • 조현숙;진계환;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제15권4호
    • /
    • pp.228-236
    • /
    • 2004
  • 망막의 신경절세포는 눈에 가해진 시각 정보를 흥분파의 형태로 변환하여 시신경을 통하여 대뇌의 시각피질까지 전달한다. 과거에 사용하여 왔던 방법은 단일 전극을 단일 뉴론의 세포내, 외에 삽입함으로써 특정 시간대에 특정 뉴론만을 기록하는 방법이었으므로 신경망 전체를 통하여 처리되어 나오는 정보를 알아보기에는 적합하지 않다. 다행히 최근에 다채널 전극을 사용하여 여러 신경세포에서 나오는 신호를 동시에 기록할 수 있는 다채널기록법(multichannel recording) 이 개발되었으므로 본 연구에서는 8행 ${\times}$ 8열의 다채널전극을 사용한 다채널기록법을 이용하여 망막신경절세포 군집의 흥분파를 기록, 분석함으로써 단일 신경세포가 아닌 망막 신경망을 거쳐 최종적으로 나오는 신호에 대해서 연구하였다. 전극에 부착된 망막 절편에 2초 동안 빛을 가하고 5초 동안 빛이 차단되는 자극을 반복적으로 인가한 후, PSTH 분석방법으로 망막 신경절세포를 ON 세포, OFF세포, ON/OFF세포의 세가지 유형으로 분류할 수 있었으며, ON 세포: 35.0$\pm$4.4%, OFF 세포: 30.4$\pm$1.9%, ON/OFF 세포: 34.6$\pm$5.3% (전체 망막절편수=8)로 분포되어 있음을 확인하였다. 또한 상호상관(Cross-Correlation) 분석방법을 통해서 인접한 세포들끼리 매우 짧은 시간대에(<1 ms) 동기화된 흥분을 발사함을 확인할 수 있었고, 동기화된 흥분은 6~8개의 세포로 구성된 세포 클러스터에서 일어남을 확인하였다. 즉 개개의 신경절세포들이 빛 자극을 처리함에 있어 독립적으로 작용한다는 기존의 가정과는 달리 인접한 세포끼리는 동기화된 흥분을 보이는 것을 확인하였으며, 이러한 방식은 시세포 수와 신경절세포 수의 불균형으로 인해 초래되는 병목현상을 완화할 수 있는 효과적인 기전으로 생각된다.

  • PDF

Intraoperative Neurophysiological Monitoring for Optimal Brain Mapping

  • Park, Sang-Nam;Park, Sang-Ku
    • 대한임상검사과학회지
    • /
    • 제45권4호
    • /
    • pp.170-179
    • /
    • 2013
  • There is a correct way to avoid any sequale in the central motor area during neurosurgery procedures. A clear way to find the circumference of the central sulcus, central motor, and sensory areas by giving cortical electrical stimulation to the central motor area immediate after surgery is proposed. Looking at patients who underwent brain surgery September 2009 to July 2013, the central sulcus and speech areas around the central area of the brain was investigated, using the practices of either a localized brain map check or a direct cortical electrical stimulation test. Brain maps localized around the surgical site through functional movement or speech areas were identified. Accurate tests done during surgery without damage to motor neurons or after surgery were conducted smoothly. Although successful brain map test localization can be accomplished, there are some factors that can interfere. The following phenomena can reverse the phase: (1) the first sensory / motor in the case of patients severe nerve damage; (2) placement of the electrode on top of the vessel; (3) presence of a brain tumor near the brain cortex; (4) use of anesthesia if patient cooperation is difficult; and (5) location of the electrode position and stimulus is inappropriate.

  • PDF

The Effect of NEES on the Occurrence of Caspase-3 in the Cerebellum of Rats with Transient Global Ischemia

  • Lee, Jung Sook;Song, Young Wha;Kim, Sung Won
    • 국제물리치료학회지
    • /
    • 제5권2호
    • /
    • pp.718-722
    • /
    • 2014
  • The cerebellum is known to control balance, equilibrium, and muscle tone. If the cerebellum becomes damaged, the body is unable to retain its balancing functions or involuntary muscle movement. This is why, in stroke patients, there is a high risk of functional disability, as well as a myriad of other disabilities secondary to stroke. Ischemia was induced in SD mice by occluding the common carotid artery for 5 minutes, after which blood was reperfused. Needle electrode electrical stimulation(NEES) was applied to acupuncture points, at 12, 24, and 48 hours post-ischemia on the joksamri. Protein expression was investigated through caspase-3 antibody immuno-reactive cells in the cerebral nerve cells and Western blotting. The results were as follows: The number of caspase-3 reactive cells in the corpus cerebellum 12 and 24 hours post-ischemia was significantly (p<.05) smaller in the NEES group compared to the GI group. caspase-3 expression 12 and 24 hours post-ischemia was significantly(p<.05) smaller in the NEES group compared to the GI group. Based on these results, NEES seems to have a significant effect on Caspase-3 in the cerebellum in an ischemic state at 12 and 24 hours post ischemia, NEES delays the occurrence of early stage apoptosis-inducing Caspase-3, delaying and inhibiting apoptosis. Further systematic studies will have to be conducted in relation to the application of this study's results on stroke patients.

척추수술후증후군 환자에서 단일 전극을 이용한 경부와 흉부 척수자극술 - 증례보고 - (Cervical and Thoracic Spinal Cord Stimulation with Single Electrodes for Failed Back Surgery Syndrome - A case report -)

  • 이재준;엄태범;홍성준;황성미;임소영;신근만
    • The Korean Journal of Pain
    • /
    • 제20권2호
    • /
    • pp.199-202
    • /
    • 2007
  • Failed back surgery syndrome (FBSS) is a condition characterized by extreme pain after spinal surgery. Treatment of FBSS is aimed at improving function, using interdisciplinary approaches that encompass rehabilitation, psychological therapy, and pain management. If no response to conventional treatment is noted, a more interventional technique such as spinal cord stimulation (SCS) should be used. SCS is a well-established method of managing a variety of chronic neuropathic pain conditions. A 32 year-old male patient afflicted by FBSS that was irresponsive to both medication and several repeated nerve blocks showed improvement of symptoms after cervical and thoracic SCS with a single electrode. Centered on the midline of the spinal cord, single-electrode SCS can be an effective method for relieving pain and improving function.

양극 경두개 직류 전기 자극이 중추신경원의 흥분성에 미치는 영향 (Anodal Effects of Transcranial Direct Current Stimulation on the Excitability of Central Neuron)

  • 임영은;정진선;이정우
    • 대한임상전기생리학회지
    • /
    • 제9권2호
    • /
    • pp.19-24
    • /
    • 2011
  • Purpose : This study is to examine the effects of transcranial direct current stimulation on the excitability of the central neuron. Methods : This study selected 24 suitable women in their twenties. A positive electrode of transcranial direct current stimulation was placed on the primary motor area (M1) C4 and a negative electrode was placed on the left supraobital. A stimulation of 0.04mA/$cm^2$ was applied for 20 minutes. H-reflex and V wave used diagnostic electromyography. An active electrode was placed at the muscle belly of the medial gastrocnemius muscle at a prone posture. An electrical stimulation was given to the posterior tibial nerve. Measurements were made before and after the stimulation. All data were analyzed with SPSS 12.0 and between each measuring before and after the change of the H-reflex and V wave amplitude. Results : There were no significant differences in all H wave, M wave, and V wave amplitude before and after transcranial direct current stimulation. There were no significant differences in the change of H/M ratio and V/M ratio before and after transcranial direct current stimulation. Conclusion : We know that transcranial direct current stimulation cannot have an influence on a normal grown-up person's central neuron.

Intracellular Electrical Stimulation on PC-12 Cells through Vertical Nanowire Electrode

  • Kim, Hyungsuk;Kim, Ilsoo;Lee, Jaehyung;Lee, Hye-young;Lee, Eungjang;Jeong, Du-Won;Kim, Ju-Jin;Choi, Heon-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.407-407
    • /
    • 2014
  • Nanotechnology, especially vertically grown silicon nanowires, has gotten great attentions in biology due to characteristics of one dimensional nanostructure; controllable synthetic structure such as lengths, diameters, densities. Silicon nanowires are promising materials as nanoelectrodes due to their highly complementary metal-oxide-semiconductor (CMOS) - and bio-compatibility. Silicon nanowires are so intoxicated that are effective for bio molecular delivery and electrical stimulation. Vertical nanowires with integrated Au tips were fabricated for electrical intracellular interfacing with PC-12 cells. We have made synthesized two types of nanowire devices; one is multi-nanowires electrode for bio molecular sensing and electrical stimulation, and the other is single-nanowires electrode respectively. Here, we demonstrate that differentiation of Nerve Growth Factor (NGF) treated PC-12 cells can be promoted depending on different magnitudes of electrical stimulation and density of Si NWs. It was fabricated by both bottom-up and top-down approaches using low pressure chemical vapor deposition (LPCVD) with high vacuuming environment to electrically stimulate PC-12 cells. The effects of electrical stimulation with NGF on the morphological differentiation are observed by Scanning Electron Microscopy (SEM), and it induces neural outgrowth. Moreover, the cell cytosol can be dyed selectively depending on the degree of differentiation along with fluorescence microscopy measurement. Vertically grown silicon nanowires have further expected advantages in case of single nanowire fabrication, and will be able to expand its characteristics to diverse applications.

  • PDF