• 제목/요약/키워드: neighborhood metrics

검색결과 9건 처리시간 0.028초

Contrast Enhancement using Histogram Equalization with a New Neighborhood Metrics

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제11권6호
    • /
    • pp.737-745
    • /
    • 2008
  • In this paper, a novel neighborhood metric of histogram equalization (HE) algorithm for contrast enhancement is presented. We present a refinement of HE using neighborhood metrics with a general framework which orders pixels based on a sequence of sorting functions which uses both global and local information to remap the image greylevels. We tested a novel sorting key with the suggestion of using the original image greylevel as the primary key and a novel neighborhood distinction metric as the secondary key, and compared HE using proposed distinction metric and other HE methods such as global histogram equalization (GHE), HE using voting metric and HE using contrast difference metric. We found that our method can preserve advantages of other metrics, while reducing drawbacks of them and avoiding undesirable over-enhancement that can occur with local histogram equalization (LHE) and other methods.

  • PDF

A Novel Filter ed Bi-Histogram Equalization Method

  • Sengee, Nyamlkhagva;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제18권6호
    • /
    • pp.691-700
    • /
    • 2015
  • Here, we present a new framework for histogram equalization in which both local and global contrasts are enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Filters are chosen depending on image properties, such as noise removal and smoothing. Our experimental results confirmed that this does not increase the computational cost because the filtering process is done by our proposed arrangement of making the histogram while checking neighborhood metrics simultaneously. If the two methods, i.e., histogram equalization and filtering, are performed sequentially, the first method uses the original image data and next method uses the data altered by the first. With combined histogram equalization and filtering, the original data can be used for both methods. The proposed method is fully automated and any spatial neighborhood filter type and size can be used. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

Contrast Enhancement for Segmentation of Hippocampus on Brain MR Images

  • Sengee, Nyamlkhagva;Sengee, Altansukh;Adiya, Enkhbolor;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1409-1416
    • /
    • 2012
  • An image segmentation result depends on pre-processing steps such as contrast enhancement, edge detection, and smooth filtering etc. Especially medical images are low contrast and contain some noises. Therefore, the contrast enhancement and noise removal techniques are required in the pre-processing. In this study, we present an extension by a novel histogram equalization in which both local and global contrast is enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Most important is that original image information can be used for both global brightness preserving and local contrast enhancement, and image quality improvement filtering. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

An Experimental Study of Image Thresholding Based on Refined Histogram using Distinction Neighborhood Metrics

  • Sengee, Nyamlkhagva;Purevsuren, Dalaijargal;tumurbaatar, Tserennadmid
    • Journal of Multimedia Information System
    • /
    • 제9권2호
    • /
    • pp.87-92
    • /
    • 2022
  • In this study, we aimed to illustrate that the thresholding method gives different results when tested on the original and the refined histograms. We use the global thresholding method, the well-known image segmentation method for separating objects and background from the image, and the refined histogram is created by the neighborhood distinction metric. If the original histogram of an image has some large bins which occupy the most density of whole intensity distribution, it is a problem for global methods such as segmentation and contrast enhancement. We refined the histogram to overcome the big bin problem in which sub-bins are created from big bins based on distinction metric. We suggest the refined histogram for preprocessing of thresholding in order to reduce the big bin problem. In the test, we use Otsu and median-based thresholding techniques and experimental results prove that their results on the refined histograms are more effective compared with the original ones.

Determining Absolute Interpolation Weights for Neighborhood-Based Collaborative Filtering

  • Kim, Hyoung-Do
    • Management Science and Financial Engineering
    • /
    • 제16권2호
    • /
    • pp.53-65
    • /
    • 2010
  • Despite the overall success of neighbor-based CF methods, there are some fundamental questions about neighbor selection and prediction mechanism including arbitrary similarity, over-fitting interpolation weights, no trust consideration between neighbours, etc. This paper proposes a simple method to compute absolute interpolation weights based on similarity values. In order to supplement the method, two schemes are additionally devised for high-quality neighbour selection and trust metrics based on co-ratings. The former requires that one or more neighbour's similarity should be better than a pre-specified level which is higher than the minimum level. The latter gives higher trust to neighbours that have more co-ratings. Experimental results show that the proposed method outperforms the pure IBCF by about 8% improvement. Furthermore, it can be easily combined with other predictors for achieving better prediction quality.

네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구 (A Study on the Effect of Network Centralities on Recommendation Performance)

  • 이동원
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.23-46
    • /
    • 2021
  • 개인화 추천에서 많이 사용되는 협업 필터링은 고객들의 구매이력을 기반으로 유사고객을 찾아 상품을 추천할 수 있는 매우 유용한 기법으로 인식되고 있다. 그러나, 전통적인 협업 필터링 기법은 사용자 간에 직접적인 연결과 공통적인 특징을 기반으로 유사도를 계산하는 방식으로 인해 신규 고객 혹은 상품에 대해 유사도를 계산하기 힘들다는 문제가 제기되어 왔다. 이를 극복하기 위하여, 다른 기법을 함께 사용하는 하이브리드 기법이 고안되기도 하였다. 이런 노력의 하나로서, 사회연결망의 구조적 특성을 적용하여 이런 문제를 해결하려는 시도가 있었다. 이는, 직접적으로 유사성을 찾기 힘든 사용자 간에도 둘 사이에 놓인 유사한 사용자 또는 사용자들을 통해 유추해내는 방식으로 상호 간의 유사성을 계산하는 방식을 적용한 것이다. 즉, 구매 데이터를 기반으로 사용자의 네트워크를 생성하고 이 네트워크 내에서 두 사용자를 간접적으로 이어주는 네트워크의 특성을 기반으로 둘 사이의 유사도를 계산하는 것이다. 이렇게 얻은 유사도는 추천대상 고객이 상품의 추천에 대한 수락여부를 결정하는 척도로 활용될 수 있다. 서로 다른 중심성 척도는 추천성과에 미치는 영향이 서로 다를 수 있다는 점에서 중요한 의미를 갖는다 할 수 있다. 이런 유사도의 계산을 위해서 네트워크의 중심성을 활용할 수 있다. 본 연구에서는 여기서 더 나아가 이런 중심성이 추천성과에 미치는 영향이 추천 알고리즘에 따라서도 다를 수 있다는 데에서 주목하여 수행되었다. 또한, 이런 네트워크 분석을 활용한 추천기법은 신규 고객 혹은 상품뿐만 아니라 전체 고객 혹은 상품으로 그 대상을 넓히더라도 추천 성능을 높이는 데 기여할 것을 기대할 수 있을 것이다. 이런 관점에서 본 연구는 네트워크 모형에서 연결선이 생성되는 것을 이진 분류의 문제로 보고, 추천 모형에 적용할 분류 기법으로 의사결정나무, K-최근접이웃법, 로지스틱 회귀분석, 인공신경망, 서포트 벡터 머신을 선택하고, 온라인 쇼핑몰에서 4년2개월간 수집된 구매 데이터로 실험을 진행하였다. 사회연결망에서 측정된 중심성 척도를 각 분류 기법에 적용하여 생성한 모형을 비교 실험한 결과, 각 모형 별로 중심성 척도의 추천성공률이 서로 다르게 나타남을 확인할 수 있었다.

An Energy Efficient Interference-aware Routing Protocol for Underwater WSNs

  • Khan, Anwar;Javaid, Nadeem;Ali, Ihsan;Anisi, Mohammad Hossein;Rahman, Atiq Ur;Bhatti, Naeem;Zia, Muhammad;Mahmood, Hasan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4844-4864
    • /
    • 2017
  • Interference-aware routing protocol design for underwater wireless sensor networks (UWSNs) is one of the key strategies in reducing packet loss in the highly hostile underwater environment. The reduced interference causes efficient utilization of the limited battery power of the sensor nodes that, in consequence, prolongs the entire network lifetime. In this paper, we propose an energy-efficient interference-aware routing (EEIAR) protocol for UWSNs. A sender node selects the best relay node in its neighborhood with the lowest depth and the least number of neighbors. Combination of the two routing metrics ensures that data packets are forwarded along the least interference paths to reach the final destination. The proposed work is unique in that it does not require the full dimensional localization information of sensor nodes and the network total depth is segmented to identify source, relay and neighbor nodes. Simulation results reveal better performance of the scheme than the counterparts DBR and EEDBR techniques in terms of energy efficiency, packet delivery ratio and end-to-end delay.

속도 향상을 위한 서포트 벡터 머신의 파라미터 탐색 방법론 (Parameter search methodology of support vector machines for improving performance)

  • 이성보;김재영;김철홍;김종면
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권3호
    • /
    • pp.329-337
    • /
    • 2017
  • 본 논문에서는 서포트 벡터 머신의 중요한 파라미터인 C와 σ값을 빠르고 정확하게 찾는 탐색 방법론을 제안한다. 기존에 알려진 격자 탐색 방식은 모든 경우를 비교하기 때문에 탐색속도가 느리다. 이러한 문제점을 개선하기 위해 본 논문에서는 탐색속도 향상을 위한 딥 서치 방식을 제안한다. 1단계에서는 C-σ 정확도지표를 4등분 한 뒤 각 영역의 중간 값을 탐색하여 가장 정확도 값이 높은 지점을 시작 지점으로 선택한다. 2단계에서는 선정된 시작지점을 다시 4등분한 뒤 정확도 값이 가장 큰 지점을 새로운 탐색지점으로 지정한다. 3단계에서는 탐색지점에 이웃한 8개의 지점들을 탐색하여 정확도 값이 가장 높은 곳을 새로운 시작 지점으로 선정한 뒤 해당 지점을 4등분하여 정확도 값을 계산한다. 마지막 단계에서는 이웃 지점의 값들보다 탐색지점의 정확도지표 값이 최댓값이 될 때까지 진행한다. 최댓값을 만족하지 않을시 2단계에서부터 반복하며 입력된 레벨 값만큼 반복을 진행한다. 베어링의 결함 및 정상 데이터를 사용하여 비교한 결과, 제안한 Deep search 알고리즘은 기존 알고리즘 보다 성능 및 탐색시간에서 우수성을 보였다.

생활인구와 지역의 건강결과 간 관계 분석: 서울특별시를 중심으로 (Relationship between Living Population and Regional Health Outcome: Focused on Seoul Metropolitan City)

  • 강제구;남은우;원영주;장한솔;이광수
    • 보건행정학회지
    • /
    • 제34권3호
    • /
    • pp.282-292
    • /
    • 2024
  • 연구배경: 본 연구는 서울의 인구이동 특성을 반영할 수 있는 생활인구와 지역의 건강결과 간 관계를 파악하는 것을 목적으로 한다. 방법: 본 연구에서는 통계청 마이크로데이터 통합서비스의 사망원인통계 원시자료를 사용하였다. 독립변수인 생활인구를 파악하기 위해 KT 통신사(Korean Telecom)에서 제공하고 있는 서울시 25개 자치구의 생활인구 데이터를 활용하였다. 통제변수는 SDoH (social determinants of health)의 네 가지 영역(경제적 안정, 의료접근성 및 품질, 이웃 및 건축환경, 사회 및 커뮤니티 연결)을 기반으로 하였다. 이후 패널 generalized estimating equations (GEE) 분석을 통해 생활인구와 지역의 건강결과 간 관계를 확인하였다. 결과: 패널 GEE 분석결과 모든 사망 관련 건강결과(회피 가능 사망률, 예방 가능 사망률, 치료 가능 사망률)는 생활인구와 통계적으로 유의미한 음(-)의 관계가 있었다. 이는 생활인구의 증가가 사망 관련 건강결과에 긍정적인 영향을 미친다는 것을 시사하는 결과이다. 결론: 지역의 건강결과와 인구밀도 사이에 유의미한 관계가 있음을 확인한 것은 지역의 건강격차 완화를 목표로 하는 정책 개발의 핵심 지표로써 생활인구지표를 사용해야 함을 강조하는 결과이다. 또한 본 연구결과는 생활인구가 적은 지역을 중심으로 지역의 인프라를 전략적으로 확장해야 함을 시사한다.