• Title/Summary/Keyword: neighbor selection

Search Result 130, Processing Time 0.02 seconds

Machine Learning Based Neighbor Path Selection Model in a Communication Network

  • Lee, Yong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • Neighbor path selection is to pre-select alternate routes in case geographically correlated failures occur simultaneously on the communication network. Conventional heuristic-based algorithms no longer improve solutions because they cannot sufficiently utilize historical failure information. We present a novel solution model for neighbor path selection by using machine learning technique. Our proposed machine learning neighbor path selection (ML-NPS) model is composed of five modules- random graph generation, data set creation, machine learning modeling, neighbor path prediction, and path information acquisition. It is implemented by Python with Keras on Tensorflow and executed on the tiny computer, Raspberry PI 4B. Performance evaluations via numerical simulation show that the neighbor path communication success probability of our model is better than that of the conventional heuristic by 26% on the average.

On the Data Features for Neighbor Path Selection in Computer Network with Regional Failure

  • Yong-Jin Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.13-18
    • /
    • 2023
  • This paper aims to investigate data features for neighbor path selection (NPS) in computer network with regional failures. It is necessary to find an available alternate communication path in advance when regional failures due to earthquakes or forest fires occur simultaneously. We describe previous general heuristics and simulation heuristic to solve the NPS problem in the regional fault network. The data features of general heuristics using proximity and sharing factor and the data features of simulation heuristic using machine learning are explained through examples. Simulation heuristic may be better than general heuristics in terms of communication success. However, additional data features are necessary in order to apply the simulation heuristic to the real environment. We propose novel data features for NPS in computer network with regional failures and Keras modeling for computing the communication success probability of candidate neighbor path.

Feature Selection for Multiple K-Nearest Neighbor classifiers using GAVaPS (GAVaPS를 이용한 다수 K-Nearest Neighbor classifier들의 Feature 선택)

  • Lee, Hee-Sung;Lee, Jae-Hun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.871-875
    • /
    • 2008
  • This paper deals with the feature selection for multiple k-nearest neighbor (k-NN) classifiers using Genetic Algorithm with Varying reputation Size (GAVaPS). Because we use multiple k-NN classifiers, the feature selection problem for them is vary hard and has large search region. To solve this problem, we employ the GAVaPS which outperforms comparison with simple genetic algorithm (SGA). Further, we propose the efficient combining method for multiple k-NN classifiers using GAVaPS. Experiments are performed to demonstrate the efficiency of the proposed method.

Effective Recommendation Algorithms for Higher Quality Prediction in Collaborative Filtering (협동적 필터링에서 고품질 예측을 위한 효과적인 추천 알고리즘)

  • Kim, Taek-Hun;Park, Seok-In;Yang, Sung-Bong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1116-1120
    • /
    • 2010
  • In this paper we present two refined neighbor selection algorithms for recommender systems and also show how the attributes of the items can be used for higher prediction quality. The refined neighbor selection algorithms adopt the transitivity-based neighbor selection method using virtual neighbors and alternate neighbors, respectively. The experimental results show that the recommender systems with the proposed algorithms outperform other systems and they can overcome the large scale dataset problem as well as the first rater problem without deteriorating prediction quality.

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.

Band Selection Using Forward Feature Selection Algorithm for Citrus Huanglongbing Disease Detection

  • Katti, Anurag R.;Lee, W.S.;Ehsani, R.;Yang, C.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.417-427
    • /
    • 2015
  • Purpose: This study investigated different band selection methods to classify spectrally similar data - obtained from aerial images of healthy citrus canopies and citrus greening disease (Huanglongbing or HLB) infected canopies - using small differences without unmixing endmember components and therefore without the need for an endmember library. However, large number of hyperspectral bands has high redundancy which had to be reduced through band selection. The objective, therefore, was to first select the best set of bands and then detect citrus Huanglongbing infected canopies using these bands in aerial hyperspectral images. Methods: The forward feature selection algorithm (FFSA) was chosen for band selection. The selected bands were used for identifying HLB infected pixels using various classifiers such as K nearest neighbor (KNN), support vector machine (SVM), naïve Bayesian classifier (NBC), and generalized local discriminant bases (LDB). All bands were also utilized to compare results. Results: It was determined that a few well-chosen bands yielded much better results than when all bands were chosen, and brought the classification results on par with standard hyperspectral classification techniques such as spectral angle mapper (SAM) and mixture tuned matched filtering (MTMF). Median detection accuracies ranged from 66-80%, which showed great potential toward rapid detection of the disease. Conclusions: Among the methods investigated, a support vector machine classifier combined with the forward feature selection algorithm yielded the best results.

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.

Performance Improvement of Nearest-neighbor Classification Learning through Prototype Selections (프로토타입 선택을 이용한 최근접 분류 학습의 성능 개선)

  • Hwang, Doo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Nearest-neighbor classification predicts the class of an input data with the most frequent class among the near training data of the input data. Even though nearest-neighbor classification doesn't have a training stage, all of the training data are necessary in a predictive stage and the generalization performance depends on the quality of training data. Therefore, as the training data size increase, a nearest-neighbor classification requires the large amount of memory and the large computation time in prediction. In this paper, we propose a prototype selection algorithm that predicts the class of test data with the new set of prototypes which are near-boundary training data. Based on Tomek links and distance metric, the proposed algorithm selects boundary data and decides whether the selected data is added to the set of prototypes by considering classes and distance relationships. In the experiments, the number of prototypes is much smaller than the size of original training data and we takes advantages of storage reduction and fast prediction in a nearest-neighbor classification.

Determining Absolute Interpolation Weights for Neighborhood-Based Collaborative Filtering

  • Kim, Hyoung-Do
    • Management Science and Financial Engineering
    • /
    • v.16 no.2
    • /
    • pp.53-65
    • /
    • 2010
  • Despite the overall success of neighbor-based CF methods, there are some fundamental questions about neighbor selection and prediction mechanism including arbitrary similarity, over-fitting interpolation weights, no trust consideration between neighbours, etc. This paper proposes a simple method to compute absolute interpolation weights based on similarity values. In order to supplement the method, two schemes are additionally devised for high-quality neighbour selection and trust metrics based on co-ratings. The former requires that one or more neighbour's similarity should be better than a pre-specified level which is higher than the minimum level. The latter gives higher trust to neighbours that have more co-ratings. Experimental results show that the proposed method outperforms the pure IBCF by about 8% improvement. Furthermore, it can be easily combined with other predictors for achieving better prediction quality.

Prototype-Based Classification Using Class Hyperspheres (클래스 초월구를 이용한 프로토타입 기반 분류)

  • Lee, Hyun-Jong;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.483-488
    • /
    • 2016
  • In this paper, we propose a prototype-based classification learning by using the nearest-neighbor rule. The nearest-neighbor is applied to segment the class area of all the training data with hyperspheres, and a hypersphere must cover the data from the same class. The radius of a hypersphere is computed by the mid point of the two distances to the farthest same class point and the nearest other class point. And we transform the prototype selection problem into a set covering problem in order to determine the smallest set of prototypes that cover all the training data. The proposed prototype selection method is designed by a greedy algorithm and applicable to process a large-scale training set in parallel. The prediction rule is the nearest-neighbor rule and the new training data is the set of prototypes. In experiments, the generalization performance of the proposed method is superior to existing methods.