• Title/Summary/Keyword: negative feedback

Search Result 460, Processing Time 0.034 seconds

A study on the Causal Feedback Relationship between Special Pardon for Traffic Law Violators and Traffic Accidents (교통법규 위반자에 대한 사면과 교통사고 발생 간의 인과순환적 관계에 대한 연구)

  • Choi, Nam-Hee
    • Korean System Dynamics Review
    • /
    • v.10 no.4
    • /
    • pp.53-72
    • /
    • 2009
  • More than 24.43 million people received a special pardon to mark the anniversary of Liberation Day on Aug. 15 and to commemorate other national event, during 15years(1995-2009), in this period six times of presidential pardon was implemented. The special pardon allows traffic law violator to drive again with their violation records wiped clean. But traffic records show that traffic accidents used to increase very fast in a short period by up to 3-15 percent after implementing the every massive pardons. This study explores the causal feedback relationship between presidential special pardon for traffic law violators and the occurrence of an traffic accidents using a system thinking approach and simulation modelling. Particularly, this study focused on the analysing significant negative impact of the traffic pardon on the occurrence of worrisome traffic accidents. The results of this study show that presidential special pardon have had impact on the traffic accidents as a increasing leverage of positive feedback loop and the obedience of traffic law as a decreasing leverage of negative feedback loop. Finally, this study conclude that the cyclical increasing pattern of traffic accident is resulting from the periodically conducted presidential pardons with political aims.

  • PDF

Improved negative capacitance circuit stable with a low gain margin (이득 여유가 작아도 안정한 개선된 네가티브 커패시턴스 회로)

  • 김영필;황인덕
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.68-77
    • /
    • 2003
  • An improved negative capacitance circuit that cancels out input impedance of a front-end in a bioimpedance measurement and operates stably with a low gain margin has been proposed. Since the proposed circuit comprises wide-band operational amplifiers, selecting operational amplifiers is easy, while an operational amplifier of prefer bandwidth should be chosen to apply conventional circuit. Also, since gain margin can be controlled by a feedback resistor connected serially with a feedback capacitor, gain margin is tuneable with a potentiometer. The input impedance of the proposed circuit is two times larger than that of the conventional circuit and 40-times than that without a negative capacitance circuit. Furthermore, closed-loop phase response of the proposed circuit is better than that of the conventional circuit or without a negative capacitance circuit. Above all, for the proposed circuit, the frequency at which a gain peaking occurs is higher than the frequency at which the loop gain becomes a maximum. Thus, the proposed circuit is not affected by a gain peaking and can be operated with a very low gain margin.

Design of 4-Pole Low Noise Active Bandpass Filter Improving Amplitude Flatness of Passband (통과대역 평탄도를 개선한 4단 저잡음 능동 대역통과 여파기 설계)

  • 방인대;전영훈;이재룡;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.590-598
    • /
    • 2004
  • An active capacitance circuit which employs series feedback network for the implement of negative resistance and low noise operation is analyzed in depth and its application to low noise active RF BPF's is discussed. Whereas many authors reported a lot of circuits that embody negative resistance circuit most of them have concerns for the equivalent resistance and reactance value at the center frequency. In this case, it could be possible to face a problem that the negative resistance circuit becomes unstable, or have poor flatness in passband because of insufficient forecast for the negative resistance values as the frequency goes higher or lower. In this paper, we extracted the exact equivalent values of this circuit and analyzed the RF characteristics with the varying the values of active devices and feedback circuits and presented the method that the flatness of passband can be improved. We have designed a 4-pole active BPF, which has the bandwidth of 60 ㎒, 0.67 ㏈ insertion loss, 0.3 ㏈ ripple, and noise figure of 3.0 ㏈ at 1.99 ㎓ band.

Development of Force Feedback Seat for PC-Game (Force Feedback을 이용한 PC Game용 체감시트 개발)

  • Choi Sam-Ha;Kim Kyung-Sik
    • Journal of Game and Entertainment
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • Among recent technologies that are applied to game development, virtual reality part is getting much attention for its technological effectiveness in transmitting game processing circumstances in variety that are happening in game world very realistically. In this study we analyze interface for game that is based on a action realization technology and force-feedback technology among technologies for developing virtual reality, in other words, technical analogy on game controller and the positive and negative sides of game controller for each platform. Based on that, more ordinary and effective way to deliver the functions to users in PC game field where application of force-feedback technology is least satisfied. And, Force-Feedback seat has been developed to satisfy the users' needs by using vibration.

  • PDF

Effect of Sensory Feedback Type on Correct Sitting Posture Learning on Healthy Adults (감각 되먹임 종류가 건강한 성인 남성의 올바른 앉은 자세 학습에 미치는 영향)

  • Shin, Ho-Jin;Kim, Sung-Hyeon;Cho, Hwi-Young
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.4
    • /
    • pp.125-137
    • /
    • 2021
  • PURPOSE: The growing number of people exposed to a static sitting posture has resulted in an increase in people with a poor posture out of the optimally aligned posture because of the low awareness of a correct sitting posture. Learning the correct sitting posture by applying sensory feedback is essential because a poor posture has negative consequences for the spine. Therefore, this study examined the effects of the sensory feedback types on learning correct sitting posture. METHODS: Thirty-six healthy adult males were assigned to a visual feedback group, a tactile feedback group, and a visuotactile feedback group to learn the correct sitting posture by applying sensory feedback. The spine angle, muscle activity, and muscle thickness were measured in the sitting position using retro-reflexive markers, electromyography, and ultrasound immediately after, five minutes, and 10 minutes after intervention. RESULTS: The intervention time was significantly shorter in the visuotactile feedback group than the visual feedback group (p < .05). Compared to the pre-intervention, the repositioning error angles of the thoracic and lumbar vertebrae of all groups were reduced significantly immediately after intervention and after five minutes. After 10 minutes, there was a significant difference in the thoracic and lumbar repositioning error angles of the tactile feedback group and the visuotactile feedback group (p < .05). No significant difference was noted at any time compared to the pre-intervention in all groups (p > .05). CONCLUSION: The use of tactile and visuotactile feedback in intervention to correct the sitting posture is proposed.

Low Noise Phase Locked Loop with Negative Feedback Loop including Frequency Variation Sensing Circuit (주파수 변화 감지 회로를 포함하는 부궤환 루프를 가지는 저잡음 위상고정루프)

  • Choi, Young-Shig
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • A low phase noise phase locked loop (PLL) with negative feedback loop including frequency variation sensing circuit (FVSC) has been proposed. The FVSC senses the frequency variation of voltage controlled oscillator output signal and controls the volume of electric charge in loop filter capacitance. As the output frequency of the phase locked loop increases, the FVSC reduces the loop filter capacitor charge. This causes the loop filter output voltage to decrease, resulting in a phase locked loop output frequency decrease. The added negative feedback loop improves the phase noise characteristics of the proposed phase locked loop. The size of capacitance used in FVSC is much smaller than that of loop filter capacitance resulting in no effect in the size of the proposed PLL. The proposed low phase noise PLL with FVSC is designed with a supply voltage of 1.8V in a 0.18㎛ CMOS process. Simulation results show the jitter of 273fs and the locking time of 1.5㎲.

Comparison between the Effect of Intermittent and Continuous Visual Feedback in Sway Balance Training with Normal Subjects (정상인에서 흔들림 균형 훈련시 간헐적인 방법과 지속적 방법에 의한 시각적 되먹임의 효과 비교)

  • Park, Joon-Young;Oh, Shin-Young;Jang, Jin-Ho
    • Physical Therapy Korea
    • /
    • v.4 no.2
    • /
    • pp.59-65
    • /
    • 1997
  • To improve the effect of balance training, visual feedback is usually used. During the training process there are some factors which decrease the effect. Neurophysiologically, the main negative factor is thought to be synaptic fatigue which decreases the sensitivity of synapses. The purpose of this study was to find a more effective balance training method. In this study, a total of 60 normal subjects-19~30 years old young males and females(M=30, F=30)-participated, and they were randomized as A, B, and C group, each group containing 20 subjects. First, all groups had a pre-test of sway balance. One minute later, A group was trained in sway balance by continuous visual feedback for 2 minutes, B group by intermittent visual feedback which had 4 sessions of 30 seconds each and a one minute rest break. C group was not trained at all. All groups had a post-test. Only B group had improved balance compared with C group by ANOVA. On the other hand, intermittent visual feedback was more effective than continuous visual feedback in sway balance training with normal subjects.

  • PDF

An Active Bandpass Filter Using Negative Resistance Circiuts (부성저항을 이용한 능동 대역 통과 여파기)

  • 신상문;권태운;최재하
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.229-232
    • /
    • 2000
  • In this study, An active band grass filter for 2.14GHz have been designed with MMIC using negative resistance circuit. The negative resistance element was realized with a common-drain FET with series inductive feedback. The designed active filter showed an insertion loss of 0dB at 2.14GHz and a 3-dB bandwidth of 125MHz.

  • PDF

A Feedback Wideband CMOS LNA Employing Active Inductor-Based Bandwidth Extension Technique

  • Choi, Jaeyoung;Kim, Sanggil;Im, Donggu
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • A bandwidth-enhanced ultra-wide band (UWB) CMOS balun-LNA is implemented as a part of a software defined radio (SDR) receiver which supports multi-band and multi-standard. The proposed balun-LNA is composed of a single-to-differential converter, a differential-to-single voltage summer with inductive shunt peaking, a negative feedback network, and a differential output buffer with composite common-drain (CD) and common-source (CS) amplifiers. By feeding the single-ended output of the voltage summer to the input of the LNA through a feedback network, a wideband balun-LNA exploiting negative feedback is implemented. By adopting a source follower-based inductive shunt peaking, the proposed balun-LNA achieves a wider gain bandwidth. Two LNA design examples are presented to demonstrate the usefulness of the proposed approach. The LNA I adopts the CS amplifier with a common gate common source (CGCS) balun load as the S-to-D converter for high gain and low noise figure (NF) and the LNA II uses the differential amplifier with the ac-grounded second input terminal as the S-to-D converter for high second-order input-referred intercept point (IIP2). The 3 dB gain bandwidth of the proposed balun-LNA (LNA I) is above 5 GHz and the NF is below 4 dB from 100 MHz to 5 GHz. An average power gain of 18 dB and an IIP3 of -8 ~ -2 dBm are obtained. In simulation, IIP2 of the LNA II is at least 5 dB higher than that of the LNA I with same power consumption.