• 제목/요약/키워드: negative differential resistance

검색결과 50건 처리시간 0.029초

이원계 $SiO_2$$TiO_2$ 박막의 저항 변화 특성 (Resistance Switching Characteristics of Binary $SiO_2\;and\;TiO_2$ Films)

  • 박인성;김경래;안진호
    • 마이크로전자및패키징학회지
    • /
    • 제13권2호
    • /
    • pp.15-19
    • /
    • 2006
  • 이원계 산화막인 비정질 $SiO_2$와 다결정 $TiO_2$의 저항 변화 특성을 연구하였다. Metal-Insulator-Metal의 저항 소자를 형성하여 전압 sweep에 의한 I-V를 측정하여 저항 상태를 확인하였다. 즉, 낮은 저항 상태 (LRS) 와 높은 저항 상태 (HRS) 의 두 가지 저항 상태가 존재하였으며, LRS는 전압에 의한 절연체의 불완전한 breakdown 후에, HRS는 전압에 의한 negative differential resistance 후에 각각 나타났다. LRS의 경우에는 Ohmic 전도 mechanism에 의해서, HRS의 경우에는 Schottky contact에 의한 potential barrier의 생성이 저항 상태를 결정한다고 제안하였다. 즉, potential barrier의 생성과 소멸이 두 저항 상태를 형성한다고 할 수 있다. 유전율이 높은 $TiO_2$$SiO_2$에 비하여, 낮은 동작 특성 전압을 나타내었으며, 1 V에서의 저항비도 높았다.

  • PDF

Hydrogen Peroxide Prompted Lignification Affects Pathogenicity of Hemi-biotrophic Pathogen Bipolaris sorokiniana to Wheat

  • Poudel, Ajit;Navathe, Sudhir;Chand, Ramesh;Mishra, Vinod K.;Singh, Pawan K.;Joshi, Arun K.
    • The Plant Pathology Journal
    • /
    • 제35권4호
    • /
    • pp.287-300
    • /
    • 2019
  • Spot blotch caused by Bipolaris sorokiniana has spread to more than 9 million ha of wheat in the warm, humid areas of the Eastern Gangetic Plains (EGP) of South Asia and is a disease of major concern in other similar wheat growing regions worldwide. Differential lignin content in resistant and susceptible genotypes and its association with free radicals such as hydrogen peroxide ($H_2O_2$), superoxide ($O_2{^-}$) and hydroxyl radical ($OH^-$) were studied after inoculation under field conditions for two consecutive years. $H_2O_2$ significantly influenced lignin content in flag leaves, whereas there was a negative correlation among lignin and $H_2O_2$ to the Area Under Disease Progress Curve (AUDPC). The production of $H_2O_2$ was higher in the resistant genotypes than susceptible ones. The $O_2{^-}$ and $OH^-$ positively correlated with AUDPC but negatively with lignin content. This study illustrates that $H_2O_2$ has a vital role in prompting lignification and thereby resistance to spot blotch in wheat. We used cluster analysis to separate the resistant and susceptible genotypes by phenotypic and biochemical traits. $H_2O_2$ associated lignin production significantly reduced the number of appressoria and penetration pegs. We visualized the effect of lignin in disease resistance using differential histochemical staining of tissue from resistant and susceptible genotypes, which shows the variable accumulation of hydrogen peroxide and lignin around penetration sites.

Identification of An Antibacterial Gene by Differential Display from Lipopolysaccharide-Stimulated Dung Beetle, Copris tripartitus

  • Suh, Hwa-Jin;Kim, Yeon-Ju;Bang, Hea-Son;Yun, Eun-Young;Kim, Seong-Ryul;Park, Kwan-Ho;Kang, Bo-Ram;Kim, Ik-Soo;Jeon, Jae-Pil;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제17권2호
    • /
    • pp.223-228
    • /
    • 2008
  • A novel beetle antimicrobial protein from stimulated Copris tripartitus and the corresponding gene were isolated in parallel through differential display-PCR and expression in Escherichia coli. To find cDNA clones responsible for bacteria resistance, the suppression subtractive hybridization and GeneFishing differentially expressed genes system were employed in the dung beetle, Copris tripartitus immunized with lipopolysaccaride. One cDNA clone from eight subtracted clones was selected through dot blot analysis and confirmed by northern blot analysis. The 516-bp, selected cDNA clone was determined by 5' and 3' rapid amplication of cDNA ends and cloned into the GST fusion expression vector pGEX-4T-1 for expression of the protein. The expressed protein was predicted 14.7 kDa and inhibited the growth of gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. These results implied that the expressed protein is related to immune defense mechanism against microorganism.

Au기판에 자기조립화된 유기 단분자의 전압-전류 측정 연구 (A Study on the Current-Voltage Measurement of Self-Assembled Organic molecular onto Au Electrode)

  • 김승언;박상현;박재철;신훈규;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1730-1733
    • /
    • 2004
  • Device miniaturization and high integrated circuit design is of major interest for the development of electronic devices. Various studies have been conducted to develop new material and processing technique[1]. Negative Differential Resistance(NDR) is the defining behavior in several electronic components, including the Esaki diode and most notably, resonant tunneling diodes(RTD)[2]. We made a comparison of electrical properties between 4,4-Di(ethynylphenyl)-2'-nitro-1-(thioacetyl)benzene and 4-[2,5-dimethoxy-4-(p henylethynyl)phenyl]ethynylphenylethanethioate, which have been well known as a conducting molecule having possible application to molecular level NDR devices. As a result, we measured current-voltage curves using Scanning Tunneling microscopy(STM), I-V curves also showed several current peaks between negative and positive bias region.

  • PDF

자기조립 유기박막의 제작과 MIM소자의 전기적 특성 (Fabrication and Electrical Properties of MIM Devices In Self-assembled Organic Thin Film)

  • 손정호;신훈규;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 센서 박막재료 반도체재료 기술교육
    • /
    • pp.24-26
    • /
    • 2002
  • In this paper, we discuss the electrical properties of self-assembled (2'-amino-4,4-di(ethynylphenyl)-5'-nitro-l-(thioacetyl)benzene), which has been well known as a conducting molecule having possible application to molecular level NDR device. The phenomenon of negative differential resistance (NDR) is characterized by decreasing current through a junction at increasing voltage. also fabrication of MIM-type molecular electronic and the Molecular Level Using Scanning Tunneling Microscopy

  • PDF

GaAs 벌크에서 전자의 과도 전송 특성 (A study on the transient electron transport in GaAs bulk)

  • 임행삼;황의성;심재훈;이정일;홍순석
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.268-273
    • /
    • 1997
  • In this paper the transient electron transport in GaAs bulk is simulated by using ensemble Monte Carlo method. To analyze the transient electron transport the 10000 electrons in the .GAMMA. valley are simulated simultaneously for 10 picoseconds. The electric field-velocity relation is obtained. The high impurity density reduces the negative differential resistance effect. The result of transient average velocity shows the electron velocity in the transient state is faster than that in the steady state. This transient velocity overshoot is caused by the intervalley scattering mechanism. And we confirmed the fact that the energy relaxation time is longer than the momentum relaxation time.

  • PDF

단일 양자 우물 구조로 된 밴드간 공명 터널링 다이오드의 전류-전압 특성 (I-V characteristics of resonant interband tunneling diodes with single quantum well structure)

  • 김성진;박영석
    • 전자공학회논문지D
    • /
    • 제34D권4호
    • /
    • pp.27-32
    • /
    • 1997
  • In resonant tunneling diodes with the quantum well structure showing the negative differential resistance (NDR), it is essential to increase both the peak-to-valley current ratio (PVCR) and the peak current desnity ( $J_{p}$) for the accurate digital switching operation and the high output of the device. In this work, a resonant interband tunneling diode (RITD) with single quantum well structure, which is composed of I $n_{0.47}$As/I $n_{0.52}$A $l_{0.48}$As heterojunction on the InP substrate, is fabricated ot improve PVCR and JP, and then the dependence of I-V charcteristics on the width of the quantum well was investigated.d.ted.d.

  • PDF

백금족 전력 계면에서 전기화학적 Impulse 발진 (Electrochemical Impulse Oscillations at the Platinum Group Electrode Interfaces)

  • 전장호;손광철;라극환
    • 전자공학회논문지A
    • /
    • 제32A권3호
    • /
    • pp.143-151
    • /
    • 1995
  • The electrochemical impulse oscillations of the cathodic currents at the platinum group (Pt, Pd) electrode/(0.05M KHC$_{8}H_{4}O_{4}$) buffer solution interfaces have been studied using voltammetric, chronoamperometric, and electrochemical impedance methods. The periodic impulses of the cathodic currents are the activation controlled currents due to the hydrogen evolution reaction, and depend on the fractional surface coverage of the adsorbed hydrogen intermediate and potential. The oscillatory mechanism of the cathodic current impulses is connected with the unstable steady state of negative differential resistance. The widths and periods of the cathodic current impulses are 4ms or 5ms and 152.5ms or 305ms, respectively. The H$^{+}$ discharge reaction step is 38 or 61 times faster thatn the recombination reaction steps and the H$^{+}$ mass transport processes. The atom-atom recombination reaction step is twice faster thatn the atom-ion recombination reaction step. The two kinds of active sites corresponding to the atom-atom and atom-ion recombination reaction steps exist on the platinum group electrode surfaces.

  • PDF

단일양자 우물구조로 된 InGaAs/InAlAs의 밴드간 공명 터널링 다이오드에 관한 연구 (InGaAs/InAIAs resonant interband tunneling diodes(RITDs) with single quantum well structure)

  • 김성진;박영석;이철진;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1456-1458
    • /
    • 1996
  • In resonant tunneling diodes with the quantum well structure showing the negative differential resistance (NDR), it is essential to increase both the peak-to-valley current ratio (PVCR) and the peak current density ($J_p$) for the accurate switching operation and the high output of the device. In this work, a resonant interband tunneling diode (RITD) with single quantum well structure, which is composed of $In_{0.53}Ga_{0.47}As/ln_{0.52}Al_{0.48}As$ heterojunction on the InP substrate, is suggested to improve the PVCR and $J_p$ through the narrowed tunnel barriers. As the result, the measured I-V curves showed the PVCR over 60.

  • PDF

Effects of Thermal-Carrier Heat Conduction upon the Carrier Transport and the Drain Current Characteristics of Submicron GaAs MESFETs

  • Jyegal, Jang
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1997년도 추계학술대회 발표논문집:21세기를 향한 정보통신 기술의 전망
    • /
    • pp.451-462
    • /
    • 1997
  • A 2-dimensional numerical analysis is presented for thermal-electron heat conduction effects upon the electron transport and the drain current-voltage characteristics of submicron GaAs MESFETs, based on the use of a nonstationary hydrodynamic transport model. It is shown that for submicron GaAs MESFETs, electron heat conduction effects are significant on their internal electronic properties and also drain current-voltage characteristics. Due to electron heat conduction effects, the electron energy is greatly one-djmensionalized over the entire device region. Also, the drain current decreases continuously with increasing thermal conductivity in the saturation region of large drain voltages above 1 V. However, the opposite trend is observed in the linear region of small drain voltages below 1 V. Accordingly, for a large thermal conductivity, negative differential resistance drain current characteristics are observed with a pronounced peak of current at the drain voltage of 1 V. On the contrary, for zero thermal conductivity, a Gunn oscillation characteristic is observed at drain voltages above 2 V under a zero gate bias condition.

  • PDF