• Title/Summary/Keyword: negative affect

Search Result 1,882, Processing Time 0.022 seconds

Effects of Dietary Germanium Biotite in Weaned, Growing and Finishing Pigs (이유자돈, 육성돈 및 비육돈에 있어 게르마늄흑운모의 급여 효과)

  • Kwon, O.S.;Kim, I.H.;Hong, J.W.;Lee, S.H.;Jung, Y.K.;Min, B.J.;Lee, W.B.;Shon, K.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.355-368
    • /
    • 2003
  • In Exp. 1, this study was conducted to determine the effect of dietary germanium biotite on growth performance and nutrient digestibility in nursery pigs. A total of sixty crossbred pigs (initial body weight 15.09$\pm$0.18kg) were used in this experiment. This study was carried out for 28 days. The five treatments were control (CON; basal diet), GB0.1 (basal diet + germanium biotite 0.1%), GB0.3 (basal diet + germanium biotite 0.3%), GB0.6 (basal diet + germanium biotite 0.6%) and GB1.0 (basal diet + germanium biotite 1.0%). For overall period, ADG and Gain/feed were not significantly different among the treatments. In Exp. 2, a study was conducted to evaluate the effect of germanium biotite as a substitute for antibiotics in growing pigs. A total of fifty five crossbred pigs (initial body weight 32.47$\pm$0.9kg) were used in this experiment. The three treatments were negative control (NC: basal diet without antibiotic), positive control (PC: basal diet + 200ppm CTC) and GB0.3 (basal diet + germanium biotite 0.3%). Pigs fed PC (17%, 385 vs 451 g/d) and GB0.3 (14%, 385 vs 438 g/d) diets grew faster(P<0.05) than pigs fed NC diet. Pigs fed PC and GB0.3 diets resulted higher(P<0.05) ADFI than pigs fed CON diet. However, pigs fed GB0.3 diet had improved gain/feed compared to pigs fed NC diet(P<0.05). Apparent digestibility of DM and N by pigs fed PC and GB0.3 diets were greater(P<0.05) than those by pigs fed NC diet. In Exp. 3, a study was conducted to determine the effect of dietary germanium biotite on growth performance, plasma characteristics, backfat thickness and fecal ammonia gas concentration in finishing pigs. A total of seventy-two finishing pigs (initial body weight 78.56$\pm$1.32kg) were used in this experiment. The treatments included 1) Control (CON; basal diet) 2) GB1.0 (basal diet + germanium biotite 1.0%), 3) GB3.0 (basal diet + germanium biotite 3.0%). Pigs fed GB1.0 diet grew faster than pigs fed CON diet and GB0.3 diet (P<0.05). Also, pigs fed CON diet showed higher(p<0.05) ADFI than pigs fed GB3.0 diet. Pigs fed GB diets had improved gain/feed compared to pigs fed CON diet(P<0.05). Total?and VLDL concentrations in plasma of pigs fed GB diets treatments were significantly decreased compared to those in pig fed CON diet(P<0.05). However, HDL-cholesterol concentration in plasma of the pig was significantly increased compared to those in pigs fed CON diet (P<0.05). Pigs fed CON diet exerted higher(P<0.05) backfat thickness than pigs fed GB1.0 (5.4%, 27.19 vs 25.71mm) and GB3.0 (16.1%, 27.19 vs 22.81mm) diets. Feces from CON treatment were higher in fecal ammonia gas concentration than faces from pigs fed GB1.0 (64.1%, 17.00 vs 6.10mg/kg)and GB3.0 (61.8%, 17.00 vs 6.50mg/kg) treatments(P<0.05). In conclusion, the results suggest that the dietary addition of germanium biotite into diets for nursery pigs did not affect growth performance. The results also suggest the possibility of germanium biotite to replace antibiotic in diets for growing pigs. In finishing pigs, dietary supplementation of germanium biotite was an effective means for improving growth performance and for decreasing Total-and LDL+VLDL-plasma cholesterols, backfat and fecal ammonia gas concentration.

Analytical Studies on Yield and Yield Components in Barley (대맥의 수량 및 수량구성요소에 관한 해석적 연구)

  • Chung-Yun Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.88-123
    • /
    • 1975
  • To obtain useful fundamental informations for improving cultural practices of barley, an investigation was made on the influences of different fertilizer level and seeding rate as well as seeding date on yield and yield components and their balancing procedure using barley variety Suwon # 18, and at the same time, 8 varieties including Suwon # 18 were also tested to clarify the varietal responses in terms of their yield and yield components under different seeding date at Crop Experiment Station, Suwon, during the period of 1969 and 1970. The results obtained were summarized as follows; 1. Days to emergence of barley variety Suwon # 18 at Suwon, took 8 to 19 days in accordance with given different seeding date (from Sept. 21 to Oct. 31). Earlier emergence was observed by early seeding and most of the seeds were emerged at 15$0^{\circ}C$ cumulated soil temperature at 5cm depth from surface under the favorable condition. 2. Degree of cold injury in different seeding date was seemed to be affected by the growth rate of seedlings and climatic condition during the wintering period. Over growth and number of leaves less than 5 to 6 on the main stem before wintering were brought in severe cold damage during the wintering period. 3. Even though the number of leaves on the main stem were variable from 11 to 16 depending upon the seeding date. this differences were occurred before wintering and less variation was observed after wintering. Particularly, differences of the number of main stem leaves from September 21 to October 11 seeding date were occurred due to the differences of number of main stem leaves before wintering. 4. Dry matter accumulation before wintering was high in early seeded plot and gradually decreased in accordance with delayed seeding date and less different in dry matter weight was observed after wintering. However, the increment rate of this dry matter was high from regrowth to heading time and became low during the ripening period. 5. Number of tillers per $\m^2$ was higher in early seeding than late one and dense planting was higher in the number of tillers than sparse planting. Number of tillers per plant was lower in number and variation in dense planting, and reverse tendency was observed in sparse planting. By increasing seedling rate in early seeding date the number of tiller per plant was remarkably decreased, but the seeding rate didn't affect the individual tillering capacity in the late seeding date. 6. Seedlings were from early planting reached maximum tillering stage earlier than those from the late planting and no remarkable changes was observed due to increased seeding rate. However. increased seeding rate tends to make it earlier the maximum tillering stage early. 7. Stage of maximum tillering was coincided with stage of 4-5 main stem leaves regardless the seeding date. 8. Number of heads per $\m^2$ was increased with increased seeding rate but considerable year variation in number of heads was observed by increased fertilizer level. Therefore, it was clear that there is no difficulties in increasing number of heads per $\m^2$ through increasing both fertilizer level and seeding rate. This type of tendency was more remarkable at optimum seeding time. In the other hand, seeding at optimum time is more important than increasing seeding rate, but increasing seeding rate was more effective in late seeding for obtaining desirable number of heads per $\m^2$. 9. Number of heads per $\m^2$ was decreased generally in all varieties tested in late seeding, but the degree of decrease by late seeding was lower in Suwon # 18. Yuegi, Hangmi and Buheung compared with Suwon # 4, Suwon # 6, Chilbo and Yungwolyukak. 10. Highly significant positive correlations were obtained between number of head and tillers per $\m^2$ from heading date in September 21 seeding, from before-wintering in October 1 seeding and in all growth period from October 11 to October 31 seeding. However, relatively low correlation coefficient was estimated between number of heads and tillers counted around late March to early April in any seeding date. 11. Valid tiller ratio varied from 33% to 76% and highest yield was obtained when valid tiller ratio was about 50%. Therefore, variation of valid tiller ratio was greater due to seeding date differences than due to seeding rate. Early seeding decreased the valid tiller ratio and gradually increased by delaying seeding date but decreased by increasing seeding rate. Among the varieties tested Suwon # 18, Hangmi, Yuegi as well as Buheung should be high valid tiller ratio not only in late seeding but also in early seeding. In contrast to this phenomena, Chilbo, Suwon # 4, Suwon # 6 and Yungwolyukak expressed low valid tiller ratio in general, and also exhibited the same tendency in late seeding date. 12. Number of grains per spike was increased by increasing fertilizer level and decreased by increasing seeding rate. Among the seeding date tested. October 21 (1969) and October 11 (1970) showed lowest number of grains per spike which was increased in both early seeding and late seeding date. There were no definite tendencies observed along with seeding date differences in respective varieties tested. 13. Variation of 1000 grain weight due to fertilizer level applied, seeding date and seeding rate was not so high as number of grains per spike and number of heads per $\m^2$, but exhibited high year variation. Increased seeding rate decreased the 1000 grain weight. Among the varieties tested Chilbo and Buheung expressed heavy grain weight, while Suwon # 18, Hangmi and Yuegi showed comparatively light grain weight. 14. Optimum seeding date in Suwon area was around October 1 to October 11. Yield was generally increased by increasing fertilizer level. Yield decrease due to early seeding was compensated in certain extent by increased fertilizer application. 15. Yield variations due to seeding rate differences were almost negligible compare to the variations due to fertilizer level and seeding date. In either early seeding or law fertilizer level yield variation due to seeding rate was not so remarkable. Increment of fertilizer application was more effective for yield increase especially at increased seeding rate. And also increased seeding rate fairly compensated the decrease of yield in late seeding date. 16. Optimum seeding rate was considered to be around 18-26 liters per 10a at N-P-K=10.5-6-6 kg/10a fertilizer level considering yield stabilization. 17. Varietal differences in optimum seeding date was quite remarkable Suwon # 6, Suwon # 4. Buheung noted high yield at early seeding and Suwon # 18, Yuegi and Hangmi yielded higher in seeding date of October 10. However, Buheung showed late seeding adaptability. 18. Highly significant positive correlations were observed between yield and yield components in all treatments. However, this correlation coefficient was increased positively by increased fertilizer level and decreased by increased seeding rate. Significant negative correlation coefficients were estimated between yield and number of grains per spike, since increased number of heads per m2 at the same level of fertilizer tends to decrease the number of grains per spike. Comparatively low correlation coefficients were estimated between 1000 grain weight and yield. 19. No significant relations in terms of correlation coefficients was observed between number of heads per $\m^2$ and 1000 grain weight or number of grains per head.

  • PDF