• Title/Summary/Keyword: neem leaves

Search Result 13, Processing Time 0.028 seconds

Effect of neem leaves and stock density of earthworm (Eisenia fetida) on quality of rice straw vermicompost

  • Sapna Yadav;Parveen Kumar
    • Advances in environmental research
    • /
    • v.12 no.1
    • /
    • pp.51-64
    • /
    • 2023
  • The sustainable management of rice straw is essential for protection of human health and environment. This study assesses the impact of stock density of earthworm (Eisenia fetida) and Neem leaves (Azadirachta indica) on the quality of the final vermicompost. The vermicompost is produced using different combinations of rice straw, Neem leaves, and cow dung (bulking agent) by varying stock density of earthworms. The vermicomposting experiments are performed in plastic containers (32 cm × 28 cm × 28 cm) in open for 90 days under laboratory conditions. The stock density of the earthworm is found to be an important factor to influence nutritional quality of the final vermicompost. There is observed significant improvement in the total nitrogen (91.8%), phosphate (73.4%), potassium (38.8%), and calcium (59.05%) content of the vermicompost produced with the highest stock density of the earthworms. All the treatments showed decrease in TOC and C:N content after 90 days of vermicomposting. The treatment with Neem leaves showed maximum growth of earthworms (2.65 fold). Neem leaves brought positive changes in the quality of final vermicompost by enhancing the growth and reproduction of the earthworms. The calcium content increased by 39% in the final vermicompost with the addition of Neem leaves at the same stock density of the earthworms. The stock density of the earthworms and Neem leaves are found to significantly improve quality of the final vermicompost as compared with the compost (control). The surface morphology in SEM images showed high degree of fragmentation in the vermicompost as compared with the compost. The combined action of microbes and earthworms resulted in high degree of disintegration in the vermicompost.

Simultaneous Extraction and Separation of Oil and Azadirachtin from Seeds and Leaves of Azadirachta indica using Binary Solvent Extraction

  • Subramanian, Sheela;Salleh, Aiza Syuhaniz;Bachmann, Robert Thomas;Hossain, Md. Sohrab
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.150-156
    • /
    • 2019
  • Conventional extraction of oil and azadirachtin, a botanical insecticide, from Azadirachta indica involves defatting the seeds and leaves using hexane followed by azadirachtin extraction with a polar solvent. In order to simplify the process while maintaining the yield we explored a binary extraction approach using Soxhlet extraction device and hexane and ethanol as non-polar and polar solvents at various ratios and extraction times. The highest oil and azadirachtin yields were obtained at 6 h extraction time using a 50:50 solvent mixture for both neem leaves (44.7 wt%, $720mg_{Aza}/kg_{leaves}$) and seeds (53.5 wt%, $1045mg_{Aza}/kg_{leaves}$), respectively.

Effect of automobile polluted soil on early seedling growth performance of Neem (Azadirachta indica A. Juss.)

  • Parveen, Shagufta;Iqbal, Muhammad Zafar;Shafiq, Muhammad;Athar, Mohammad
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Effect of automobile polluted soil with five soil concentration (0 (Control), 25, 50, 75 and 100%) was observed on early seedling growth performance and biomass production of Neem (Azadirachta indica A. Juss). The treatment of 75% automobile polluted soil significantly (p < 0.05) decreased the seedling length (18.60 cm) of A. indica. The automobile polluted soil treatment with the concentration of 50% slightly increased the root length as compared to control. The automobile polluted soil treatment with the concentration of 25, 50, 75 and 100% negatively affected shoot length of A. indica as compared to control. The treatment of all concentration of automobile polluted soil progressively decreased the total leaf area A. indica as compared to control soil treatment. The automobile polluted soils also showed negative effects on biomass production of A. indica. The automobile polluted soil treatment at 25% concentration significantly (p < 0.05) affected shoot, leaves and seedling dry weight of A. indica as compared to control soil treatment. The order of relationship between production of A. indica's seedling dry weight and automobile polluted soil treatment was observed as root > shoot > leaves > total seedling.

Assessment of Seed Viability and Vigour in Neem (Azadirachta indica A. Juss.)

  • Kumar, Devendra
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.4
    • /
    • pp.282-291
    • /
    • 2013
  • Rapid loss in viability of neem (Azadirachta indica A. Juss.) seed is a major problem. Present effort was undertaken for developing a set pattern for assessing of viability and vigour in seed of various mother tree age of neem (Age I-06 years, Age II-15 years, Age III-25 years and Age IV->30 years old). Various viability test viz. triphenyle tetrazolium chloride test, electrical conductivity, excised embryo test, and germination test have been performed on seeds obtained from mother tree age classes. Inconsistency was observed with the TTC and EC test in germination of seed in laboratory as well as nursery. While various vigour tests viz. cold test, chemical stress test (methanol stress test), and accelerated ageing test alongwith ageing index, germination test (G%, MGT and GV) and various seedling growth parameters like seedling length (cm), number of leaves, collar diameter (cm), total biomass (g) alongwith mathematical indices i.e. vigour index, sturdiness quotient, volume index, quality index, root shoot ratio in nursery as well have been taken for study and showed better consistency. On the basis present study results of various viability and vigour test indicated that mother tree age class II performed better in comparison to others and it can be recommended for seed collection. Further it is also recommended that viability of neem seed may be assessed using various laboratory tests like excise embryo test and germination test (G%, MGT and GV) and vigour test may be taken preferably by cold germination test, chemical (methanol) stress test, accelerated ageing test in laboratory and germination alongwith various seedling growth parameters seedling length (cm), number of leaves, collar diameter (cm), total biomass (g) alongwith mathematical indices like Vigour Index, Sturdiness quotient, Volume Index, Quality index, root shoot ratio in nursery as discussed in this study.

Relative Toxicity of NeemAzal-T/S to the Predacious Mite, Amblyseius womersleyi(Acari: Phytoseiidae) and the Twospotted Spider Mite, Tetranychus urticae(Acari: Tetranychidae) (점박이응애와 긴털이리응애에 대한 NeemAzal-T/S의 독성)

  • 김도익;백채훈;박종대;김상수;김선곤
    • Korean journal of applied entomology
    • /
    • v.39 no.1
    • /
    • pp.53-58
    • /
    • 2000
  • The effect of NeemAzal-T/S was tested by leaf disk method on fecundity, egg mortality, and preference of twospotted spider mite, Tetranychus urticae and its predator mite, Amblyseius womersleyi in the laboratory. Mortalities of T. urticae and A. womersleyi adults were 97.7% and 20.0%, in 100ppm treatment at 72 h after application, respectively. The mean number of eggs laid per T. urticae female adult were 0.0 and 18.5, and those of A. womersleyi were 1.6 and 2.9 at 100 ppm and 0 ppm concentrations, respectively. Hatchability of T. urticae eggs treated with 50 and 100 ppm were 52.8%, and 2.5%, respectively, and those of A. womersleyi eggs were 100% and 91.3%, respectively. Choice and no-choice tests revealed that T. urticae female preferred to alight and oviposit on untreated bean leaf disk with 13.8 to 18.2 eggs per female. In contrast, A. womersleyi female preferred on treated or untreated bean leaf equally. There was no significant differences in the number of consumption of T. urticae eggs by A. womersleyi on treated and untreated bean leaves, except 200 ppm. These results indicate that NeemAzal-TIS is highly toxic to T. urticae, and is less toxic to A. womersleyi. It may be concluded with these results that NeemAzal-T/S could be incorporated into integrated T. urticae management system.

  • PDF

Review on Molecular and Chemopreventive Potential of Nimbolide in Cancer

  • Elumalai, Perumal;Arunakaran, Jagadeesan
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.156-164
    • /
    • 2014
  • Cancer is the most dreaded disease in human and also major health problem worldwide. Despite its high occurrence, the exact molecular mechanisms of the development and progression are not fully understood. The existing cancer therapy based on allopathic medicine is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a non-toxic and effective mode of treatment is needed to control cancer development and progression. Some medicinal plants offer a safe, effective and affordable remedy to control the cancer progression. Nimbolide, a limnoid derived from the neem (Azadirachta indica) leaves and flowers of neem, is widely used in traditional medical practices for treating various human diseases. Nimbolide exhibits several pharmacological effects among which its anticancer activity is the most promising. The previous studies carried out over the decades have shown that nimbolide inhibits cell proliferation and metastasis of cancer cells. This review highlights the current knowledge on the molecular targets that contribute to the observed anticancer activity of nimbolide related to induction of apoptosis and cell cycle arrest; and inhibition of signaling pathways related to cancer progression.

Selection of Natural Materials for Eco-friendly Control for Blight of Wood-Cultivated Ginseng(Panax ginseng)

  • Lee, Chong-Kyu;Yu, Chan-Yeol
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.9-13
    • /
    • 2011
  • This study was carried out to control the disease of wood-cultivated ginseng(panax ginseng) using natural materials. Four fungi spices such as Pythium ultimum, Alternaria alternata, Fusarium oxysporum and Rhizoctonia solani which caused disease of the wood-cultivated ginseng were investigated. The infection of these fungi causes symptom on roots, stems and leaves. The leaves became dry and die. The disease caused by Pythium ultimum can be prevented by using friendly environmental materials like Chamaecyparis obtuse essential oil and Wormstop. Alternaria alternata and Fusarium oxysporum might be prevented by using wormstop extracted from Neem tree(Azadirachta indica). No substance tested effectively prevents the growth of Rhizoctonia solani.

Control of Powdery Mildew on Solanaceous Crops by Using COY (Cooking Oil and Yolk Mixture) in the Greenhouse (난황유를 이용한 가지과 작물의 흰가루병 방제)

  • Kwon, Jin-Hyeuk;Shim, Chang-Ki;Jee, Hyeong-Jin;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • Cooking oil and yolk mixture (COY), a environmentally acceptable plant protection agent, and COY+$CaCO_3$+neem oil mixture were studied to control the powdery mildew occurring on eggplant, paprika, cherry tomato and maturity tomato in glass houses and vinyl houses during 2005 to 2007. The morphological changes of the pathogenic fungi on the leaf surface before and after treatment of COY were observed. COY made of rape seed oil and COY+$CaCO_3$+neem oil mixture were sprayed three times with 5 days interval to foliar parts of eggplant, paprika and tomato and the disease development were examined 5 days after final spray. In eggplant, the control efficacy of COY to powdery mildew was 94.6%. In paprika, the control efficacy of COY to powdery mildew was 91.6% and that of COY+$CaCO_3$+neem oil mixture was 96.2% that revealed little higher than COY itself. In tomatoes(cherry or maturity tomato), the control efficacy of COY were about 91 %, however, when COY mixture were sprayed to tomato leaves and stems the powdery mildew was controlled completely. Typical and healthy mycelia, conidiophores and condia were observed through scanning electron microscope in COY unsprayed leaf surface, on the other hand destroyed and winkled mycelia and conidiophores were observed in COY treated leaves regardless host plants nor taxonomic differences of fungi.

Effect of Cooking Oil and Yolk Mixture on Control of Bemisia tabaci on Fruit Vegetables (난황유를 이용한 과채류 발생 담배가루이 방제)

  • Park, Jong-Ho;Hong, Sung-Jun;Han, Eun-Jung;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Yong-Ki;Kim, Seok-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.149-159
    • /
    • 2017
  • This study was conducted to develop an organic control method of tobacco whitefly (Bemisia tabaci) by using cooking oil and yolk mixture (COY). Mortality rate against B. tabaci nymph on paprika leaf was 94.5% by COY treatment and it was not significantly different from that by pyridaben treatment. Mortality rate against B. tabaci nymph on tomato leaf was 41.4% by COY treatment and it is lower than that by neem extract. But mortality rates of B. tabaci adult by COY and neem extract were no significant differences. Oviposition of B. tabaci were decrease respectively 75.8% and 52.7% by COY on paprika and tomato leaves. In paprika and tomato greenhouses, damaged by B. tabaci, COY was sprayed twice and resulted in respectively 100% and 38% control values.

Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

  • Bhardwaj, Sunil;Sharon, Maheshwar;Ishihara, T.;Jayabhaye, Sandesh;Afre, Rakesh;Soga, T.;Sharon, Madhuri
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in ${\mu}m$) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after $100^{th}$ cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.