• 제목/요약/키워드: nearest-neighbor rule

검색결과 43건 처리시간 0.023초

최근점 이웃망에의한 참조벡터 학습 (Learning Reference Vectors by the Nearest Neighbor Network)

  • Kim Baek Sep
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF

클래스 초월구를 이용한 프로토타입 기반 분류 (Prototype-Based Classification Using Class Hyperspheres)

  • 이현종;황두성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권10호
    • /
    • pp.483-488
    • /
    • 2016
  • 본 논문은 최근접 이웃 규칙을 이용한 프로토타입을 이용하는 분류 학습을 제안한다. 훈련 데이터가 대표하는 클래스 영역을 초월구로 분할하는데 최근접 이웃규칙을 적용시키며, 초월구는 동일 클래스 데이터들만 포함시킨다. 초월구의 반지름은 가장 인접한 다른 클래스 데이터와 가장 먼 동일 클래스 데이터의 중간 거리 값으로 결정한다. 그리고 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합을 선택하기 위해 집합 덮개 최적화를 이용한다. 제안하는 선택 방법은 클래스 별 프로토타입을 선택하는 그리디 알고리즘으로 설계되며, 대규모 훈련 데이터에 대한 병렬처리가 가능하다. 분류 예측은 최근접 이웃 규칙을 이용하며, 새로운 훈련 데이터는 프로토타입 집합이다. 실험에서 제안하는 방법은 기 연구된 학습 방법에 비해 일반화 성능이 우수하다.

최근린 배차 규칙 기반 온라인 Personal Rapid Transit 배차 알고리즘 (An Online Personal Rapid Transit Dispatching Algorithm Based on Nearest Neighbor Dispatching Rule)

  • 한충균;권보배;김백현;정락교;이훈;하병현
    • 한국시뮬레이션학회논문지
    • /
    • 제23권4호
    • /
    • pp.97-109
    • /
    • 2014
  • Personal Rapid Transit (PRT)는 차세대 대중교통 수단으로 에너지 효율적이며 높은 수준의 고객 서비스를 제공한다. 정류장에 동적으로 도착한 고객이 운송 서비스를 요청하면 PRT 시스템은 차량을 배차한다. 본 연구에서는 PRT 시스템을 위한 새로운 온라인 배차 알고리즘을 제시하였다. 제시된 알고리즘은 최근린(nearest neighbor) 배차 규칙을 기반으로 개발되었으며, 이분 매칭(bipartite matching)을 사용하여 다수의 PRT 차량과 고객을 동시에 고려하여 배차를 결정한다. 이 경우 전체 차량 중 배차 대상 차량의 선택 범위가 성능지표에 영향을 줄 수 있다. 따라서 본 연구에서는 차량의 상태를 고려하여 체계적으로 배차 차량을 선택하는 방법을 제시한다. 성능지표로 공차 이동거리와 고객 대기시간을 고려하였으며, 시뮬레이션 기법을 사용하여 배차 선택 범위에 따른 성능지표의 차이를 확인하였다. 그리고 기존의 배차 규칙과 비교하여 본 연구에서 제시하는 방법론이 우수하며 PRT 시스템에 적합한 것을 확인하였다.

계층구조 신경망을 이용한 한글 인식 (Hangul Recognition Using a Hierarchical Neural Network)

  • 최동혁;류성원;강현철;박규태
    • 전자공학회논문지B
    • /
    • 제28B권11호
    • /
    • pp.852-858
    • /
    • 1991
  • An adaptive hierarchical classifier(AHCL) for Korean character recognition using a neural net is designed. This classifier has two neural nets: USACL (Unsupervised Adaptive Classifier) and SACL (Supervised Adaptive Classifier). USACL has the input layer and the output layer. The input layer and the output layer are fully connected. The nodes in the output layer are generated by the unsupervised and nearest neighbor learning rule during learning. SACL has the input layer, the hidden layer and the output layer. The input layer and the hidden layer arefully connected, and the hidden layer and the output layer are partially connected. The nodes in the SACL are generated by the supervised and nearest neighbor learning rule during learning. USACL has pre-attentive effect, which perform partial search instead of full search during SACL classification to enhance processing speed. The input of USACL and SACL is a directional edge feature with a directional receptive field. In order to test the performance of the AHCL, various multi-font printed Hangul characters are used in learning and testing, and its processing its speed and and classification rate are compared with the conventional LVQ(Learning Vector Quantizer) which has the nearest neighbor learning rule.

  • PDF

기어의 이상검지 및 진단에 관한 연구 -Wavelet Transform해석과 KDI의 비교- (A Study on Fault Detection and Diagnosis of Gear Damages - A Comparison between Wavelet Transform Analysis and Kullback Discrimination Information -)

  • 김태구;김광일
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2000
  • This paper presents the approach involving fault detection and diagnosis of gears using pattern recognition and Wavelet transform. It describes result of the comparison between KDI (Kullback Discrimination Information) with the nearest neighbor classification rule as one of pattern recognition methods and Wavelet transform to know a way to detect and diagnosis of gear damages experimentally. To model the damages 1) Normal (no defect), 2) one tooth is worn out, 3) All teeth faces are worn out 4) One tooth is broken. The vibration sensor was attached on the bearing housing. This produced the total time history data that is 20 pieces of each condition. We chose the standard data and measure distance between standard and tested data. In Wavelet transform analysis method, the time series data of magnitude in specified frequency (rotary and mesh frequency) were earned. As a result, the monitoring system using Wavelet transform method and KDI with nearest neighbor classification rule successfully detected and classified the damages from the experimental data.

  • PDF

프로토타입 선택을 이용한 최근접 분류 학습의 성능 개선 (Performance Improvement of Nearest-neighbor Classification Learning through Prototype Selections)

  • 황두성
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.53-60
    • /
    • 2012
  • 최근접 이웃 분류에서 입력 데이터의 클래스는 선택된 근접 학습 데이터들 중에서 가장 빈번한 클래스로 예측된다. 최근접분류 학습은 학습 단계가 없으나, 준비된 데이터가 모두 예측 분류에 참여하여 일반화 성능이 학습 데이터의 질에 의존된다. 그러므로 학습 데이터가 많아지면 높은 기억 장치 용량과 예측 분류 시 높은 계산 시간이 요구된다. 본 논문에서는 분리 경계면에 위치한 학습 데이터들로 구성된 새로운 학습 데이터를 생성시켜 분류 예측을 수행하는 프로토타입 선택 알고리즘을 제안한다. 제안하는 알고리즘에서는 분리 경계 영역에 위치한 데이터를 Tomek links와 거리를 이용하여 선별하며, 이미 선택된 데이터와 클래스와 거리 관계 분석을 이용하여 프로토타입 집합에 추가 여부를 결정한다. 실험에서 선택된 프로토타입의 수는 원래 학습 데이터에 비해 적은 수의 데이터 집합이 되어 최근접 분류의 적용 시 기억장소의 축소와 빠른 예측 시간을 제공할수 있다.

클래스 영역의 다차원 구 생성에 의한 프로토타입 기반 분류 (Prototype based Classification by Generating Multidimensional Spheres per Class Area)

  • 심세용;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.21-28
    • /
    • 2015
  • 본 논문에서는 최근접 이웃 규칙을 이용한 프로토타입 선택 기반 분류 학습을 제안하였다. 각 훈련 데이터가 대표하는 클래스 영역을 구(sphere)로 분할하는데 최근접 이웃 규칙을 적용시키며, 구의 내부는 동일 클래스 데이터들만 포함하도록 한다. 프로토타입은 구의 중심점이며 프로토타입의 반지름은 가장 인접한 다른 클래스 데이터와 가장 먼 동일 클래스 데이터의 중간 거리 값으로 결정한다. 그리고 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합을 선택하기 위해 집합 덮개 최적화를 이용하여 프로토타입 선택 문제를 변형시켰다. 제안하는 프로토타입 선택 방법은 클래스 별 적용이 가능한 그리디 알고리즘으로 설계되었다. 제안하는 방법은 계산 복잡도가 높지 않으며, 대규모 훈련 데이터에 대한 병렬처리의 가능성이 높다. 프로토타입 기반 분류 학습은 선택된 프로토타입 집합을 새로운 훈련 데이터 집합으로 사용하고 최근접 이웃 규칙을 적용하여 테스트 데이터의 클래스를 예측한다. 실험에서 제안하는 프로토타입 기반 분류기는 최근접 이웃 학습, 베이지안 분류 학습과 다른 프로토타입 분류기에 비해 일반화 성능이 우수하였다.

Detection and Classification of Bearing Flaking Defects by Using Kullback Discrimination Information (KDI)

  • Kim, Tae-Gu;Takabumi Fukuda;Hisaji Shimizu
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.28-35
    • /
    • 2002
  • Kullback Discrimination Information (KDI) is one of the pattern recognition methods. KDI defined as a measure of the mutual dissimilarity computed between two time series was studied for detection and classification of bearing flaking on outer-race and inner-races. To model the damages, the bearings in normal condition, outer-race flaking condition and inner-races flaking condition were provided. The vibration sensor was attached by the bearing housing. This produced the total 25 pieces of data each condition, and we chose the standard data and measure of distance between standard and tested data. It is difficult to detect the flaking because similar pulses come out when balls pass the defection point. The detection and classification method for inner and outer races are defected by KDI and nearest neighbor classification rule is proposed and its high performance is also shown.

코호넨 신경회로망을 이용한 ULTC 변압기와 STACOM의 협조제어 (Coordination Control of ULTC Transformer and STACOM using Kohonen Neural Network)

  • 김광원;이흥재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1103-1111
    • /
    • 1999
  • STACOM will be utilized to control substation voltage in the near future. Although STACOM shows good voltage regulation performance owing to its rapid and continuous response, it needs additional reactive power compensation device to keep control margin for emergency such as fault. ULTC transformer is one of good candidates. This paper presents a Kohonen Neural Network (KNN) based coordination control scheme of ULTC transformer and STACOM. In this paper, the objective function of the coordination control is minimization of both STACOM output and the number of switchings of ULTC transformer while maintaining substation voltage magnitude to the predefined constant value. This coordination, control is performed based on reactive load trend of the substation and KNN which offers optimal tap position in view of STACOM output minimization. The input variables of KNN are active and reactive power of the substation, current tap position, and current STACOM output. The KNN is trained by effective Iterative Condensed Nearest Neighbor (ICNN) rule. This coordination control applied to IEEE 14 bus system and shows satisfactory results.

  • PDF

Guitar Tab Digit Recognition and Play using Prototype based Classification

  • Baek, Byung-Hyun;Lee, Hyun-Jong;Hwang, Doosung
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권9호
    • /
    • pp.19-25
    • /
    • 2016
  • This paper is to recognize and play tab chords from guitar musical sheets. The musical chord area of an input image is segmented by changing the image in saturation and applying the Grabcut algorithm. Based on a template matching, our approach detects tab starting sections on a segmented musical area. The virtual block method is introduced to search blanks over chord lines and extract tab fret segments, which doesn't cause the computation loss to remove tab lines. In the experimental tests, the prototype based classification outperforms Bayesian method and the nearest neighbor rule with the whole set of training data and its performance is similar to that of the support vector machine. The experimental result shows that the prediction rate is about 99.0% and the number of selected prototypes is below 3.0%.