본 논문은 개체 변환 유전자 알고리즘을 (GAVaPS) 이용하여 k-nearest neighbor (k-NN) 분류기에서 사용되는 특징들을 선정하는 방법을 제시한다. 우리는 다수의 k-NN 분류기들을 사용하기 때문에 사용되는 특징들을 선정하는 문제는 매우 탐색 영역이 크고 해결하기 어려운 문제이다. 따라서 우리는 효과적인 특징득의 선정을 위해 일반적인 유전자 알고리즘 (GA) 보다 효율적이라고 알려진 개체군 변환 유전자 알고리즘을 사용한다. 또한 다수 k-NN 분류기를 개체군 변환 유전자 알고리즘으로 효과적으로 결합하는 방법을 제시한다. 제안하는 알고리즘의 우수성을 여러 실험을 통해 보여준다.
최근 공간 네트워크 데이터베이스를 위한 질의처리 알고리즘에 관한 연구가 많은 관심을 받고 있으나, 경로-기반 질의에 대한 연구는 매우 미흡한 실정이다. 공간 네트워크 데이터베이스에서는 이동객체가 공간 네트워크상에서만 이동하기 때문에, 위치기반 서비스 및 텔레매틱스의 응용을 지원하기 위해 경로 내 최근접(In-Route Nearest Neighbor : IRNN) 질의와 같은 경로-기반 질의에 대한 효율적인 질의처리 알고리즘 연구가 필수적이다. 그러나 기존 경로 내 최근접 질의처리 알고리즘은 도로내의 병목현상을 반영하지 못하는 문제점이 존재한다. 따라서 본 논문에서는 공간제약을 고려한 경로 내 최근접 질의처리 알고리즘을 제안한다. 마지막으로, 기존 알고리즘과의 성능 비교를 통하여 제안하는 알고리즘이 우수함을 보인다.
In the present study, a novel optimization method in formation control of multi -system vehicles based on the trajectory of the nearest neighbor trajectory is presented. In this regard, the state equations of each vehicle and multisystem is derived and the optimization scheme based on minimizing the differences between actual positions and desired positions of the vehicles are conducted. This formation control is a position-based decentralized model. The trajectory of the nearest neighbor are optimized based on the current position and state of the vehicle. This approach aids the whole multi-agent system to be optimized on their trajectory. Furthermore, to overcome the cumulative errors and maintain stability in the network a semi-centralized scheme is designed for the purpose of checking vehicle position to its predefined trajectory. The model is implemented in Matlab software and the results for different initial state and different trajectory definition are presented. In addition, to avoid collision avoidance and maintain the distances between vehicles agents at a predefined desired distances. In this regard, a neural fuzzy network is defined to be utilized in conjunction with the control system to avoid collision between vehicles. The outcome reveals that the model has acceptable stability and accuracy.
비모수적 결측치 대치 방법으로 널리 사용되는 k-nearest neighbors(KNN) 방법은 자료의 국소적(local) 특징을 고려하지 않고 전체 자료에 대해 균일한 이웃의 개수 k를 사용하는 단점이 있다. 본 연구에서는 KNN의 대안으로 자료의 국소적 특징을 고려하는 adaptive nearest neighbors(ANN) 방법을 제안하였다. 나아가 microarray 자료의 경우에 대하여 결측치 대치를 통해 KNN과 ANN의 성능을 비교하였다.
현대인은 스마트폰과 매우 밀접한 관계를 가지고 있으며 이로 인한 수 많은 보안 위협에 노출되어 있다. 실제로 해커들은 스마트폰에 악성 프로그램을 은밀하게 설치하여 장치 이용 제한 및 개인정보 유출 등의 보안 위협을 야기하고 있다. 그리고 그러한 악성 프로그램은 일반적인 프로그램과 다르게 필요 이상의 권한을 요구한다. 본 논문에서는 이 같은 문제를 바탕으로 사용되는 안드로이드 기반 앱들이 요구하는 권한 데이터를 이용하여 주성분 분석(Principle Component Analysis:PCA)과 확률적 K-인접 이웃(Probabilistic K-Nearest Neighbor:PKNN) 방식을 사용하여 효과적으로 악성 프로그램과 일반 프로그램을 분류하고자 한다. 이뿐 아니라 이를 k-묶음 교차 검증(K-fold Croos Validation)을 통해 PKNN의 정확도를 측정하였다. 그리고 일반적으로 사용되는 K-인접 이웃(K-Nearest Neighbor:KNN) 방식과 비교하여, KNN이 분류하기 힘든 부분을 확률적으로 해결하는 PKNN방법을 제안한다. 최종적으로 제안한 방식을 최적화하는 ${\kappa}$와 ${\beta}$ 파라미터를 구하는 것을 목표로 한다. 본 논문에서 사용된 악성 앱 샘플은 Contagio에 요청하여 이용하였다.
본 논문에서는 GPS(Global Positioning System)를 사용할 수 있는 실외와 GPS(Global Positioning System)를 사용할 수 없는 실내에서 Wi-Fi(Wireless Fidelity)를 이용한 안드로이드 기반의 위치 정보 시스템을 설계 및 구현하였다. 보행자의 위치를 실내에서 추정하기 위해서는, 보행자의 위치에 상관없이 절대위치를 구하는 것이 필요하고, 보행자의 움직임에 따라서 상대위치를 연속적으로 추정하는 것이 필요하다. 보행자의 초기위치를 추정하기 위해서 Wi-Fi fingerprinting을 사용하였다. 기존의 Wi-Fi fingerprinting에서 가장 위치 오차가 작은 WKNN(Weighted K Nearest Neighbor) 알고리즘의 단점을 보완한 EWKNN(Enhanced Weighted K Nearest Neighbor) 알고리즘을 사용해 위치의 정확도를 높였다. 그리고 보행자의 상대위치를 추정하기 위해서는, 스마트폰에 탑재되어 있는 IMU(Inertial Measurement Unit)를 사용하였기 때문에 추가적인 장비가 필요하지 않았다.
위치기반 서비스는 무선기기와 무선 통신 기술의 발달로 인해 유비쿼터스 정보 접근의 요구에 따라 많은 관심을 받고 있다. 위치기반 서비스 중에서 제한된 최근접 질의는 무선 통신을 통해 사용자의 요구를 만족시키게 하는 중요한 질의 중 하나이다. 무선 방송 채널의 효율적 사용과 제한된 자원을 가진 무선기기를 효율적으로 사용하기 위해 제한된 최근접 질의를 효율적으로 수행하기 위해 무선방송환경에서 적합한 질의 처리 방법을 제안한다. 우선 지역을 제한조건으로 가지는 최근접 질의 기법을 제안하고 다음으로 다양한 제한조건을 수행할 수 있는 최근접 탐색 기법을 적용하고자 한다. 본 논문에서는 기존의 무선방송환경에서 적합한 기법인 분산공간색인과 비트맵 기반의 공간색인 기법에 기반한 제한된 최근접 질의 방법을 제안한다.
Purpose Due to the COVID-19 pandemic, many companies are building virtual workplaces based on virtual reality technology. Through this study, we intend to identify the trend of convergence and convergence research between virtual reality technology and work space, and suggest future promising fields based on this. Design/methodology/approach For this purpose, 12,250 bibliographic data of research papers related to Virtual Reality (VR) and Workplace were collected from Scopus from 1982 to 2021. The bibliographic data of the collected papers were analyzed using Text Mining and Pathfinder Network, Parallel Neighbor Clustering, Nearest Neighbor Centrality, and Triangle Betweenness Centrality. Through this, the relationship between keywords by period was identified, and network analysis and visualization work were performed for virtual reality-based workplace research. Findings Through this study, it is expected that the main keyword knowledge structure flow of virtual reality-based workplace convergence research can be identified, and the relationship between keywords can be identified to provide a major measure for designing directions in subsequent studies.
비디오 데이터의 효율적인 검색, 요약 등에 활용하기 위해서 대용량의 비디오 데이터를 프레임(Frame), 샷(Shot),스토리(Story)의 계층적인 구조로 표현하는 방법들이 요구되고 있으며, 이에 따라 비디오를 샷, 스토리 단위로 분할하는 연구들이 수행되고 있다. 본 논문은 비디오가 샷 단위로 분할되어 있다고 가정한 후, 인접한 샷들을 결합하여 의미 있는 최소 단위인 스토리를 분할하는 방법을 제안한다. 제안하는 방법은 각 샷에서 추출된 대표 프레임들을 비교하기 위한 CCV(Color Coherence Vector) 영상 특징을 추출한다. CCV 특징의 시각적인 유사도의 초기임계값과 일정한 시간 안에 반복되는 프레임들을 찾기 위한 시간적인 유사도의 시간 임계값을 설정하여NN(Nearest Neighbor) 클러스터링 방법을 이용하여 클러스터링을 한다. 클러스터링된 정보와 같은 장면이 한번이상 반복되는 스토리의 특성을 이용해 비디오를 스토리로 분할한다. 영화 비디오 데이터를 이용한 실험을 통해 제안하는 방법의 유효성을 검증하였다.
멀티미디어 데이타베이스 시스템에서 k-최대근접질의는 매우 빈번히 발생하며, 다른유형의 공간질의에 비하여 처리비용이 많이 요구된다. K-최대근접질의의 처리비용을 최적화하기 위해서는 색인에서 검색되는 노드의 수와 연산시간을 최소화할 수 있어야한다. 본 논문에서는 최적검색거리[1]의 연산시간을 줄일 수 있는 새로운 검색거리를 제안하고 그 특성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.