• Title/Summary/Keyword: near-infrared photometry

Search Result 45, Processing Time 0.018 seconds

2 - 4 ㎛ Spectroscopy of Red Point Sources in the Galactic Center

  • Jang, DaJeong;An, Deokkeun;Sellgren, Kris;Ramirez, Solange V.;Boogert, Adwin;Geballe, Tom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.49.2-49.2
    • /
    • 2019
  • We present results from our long-term observing campaign, using the NASA IRTF at Maunakea, to obtain 2 - 4 ㎛ spectra of 118 red point sources in the line of sight to the Galactic Center (GC). Our sample is largely composed of point sources selected from near- and mid-infrared photometry, but also includes a number of massive young stellar objects. Many of these sources show high foreground extinction as shown by deep 3.4 ㎛ aliphatic hydrocarbon absorption feature, which is a characteristic of the diffuse ISM and comes from the long line of sight through the diffuse medium toward the Central Molecular Zone (CMZ), the central 300 pc region of the GC. The deep 3.1 ㎛ H2O ice absorption band coming from the local, dense material in the GC CMZ suggests that most sources are likely located in the GC CMZ. A few of these sources show weak CCH3OH ice absorption at 3.535 ㎛, which can provide a strong constraint on the CCH3OH ice formation in the unique environment of the CMZ. From the best-fitting models, the optical depths of these features are determined and used to generate a well-rounded view of the ice composition across the GC CMZ and the spectral characteristics of massive YSOs in the GC.

  • PDF

SPATIAL DISTRIBUTION OF STARS AROUND SIX METAL-POOR GLOBULAR CLUSTERS IN THE GALACTIC BULGE

  • Chang, Cho-Rhong;Kim, Jae-Woo;Matsunaga, Noriyuki;Han, Mihwa;Ko, Jongwan;Chun, Sang-Hyun;Kang, Minhee;Sohn, Young-Jong
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.203-224
    • /
    • 2013
  • Wide-field $JHK_s$ images obtained with the SIRIUS near-infrared camera of the IRSF 1.4m telescope are used to examine the tidal structures of the spatial stellar configuration around six metal-poor ([Fe/H]< -1.0) globular clusters located within 3 kpc from the Galactic center. The radial surface density profiles are obtained from the surface photometry of the cluster images and the star counting for the photometric data. For the star counting, candidates of cluster member stars are selected with an filtering algorithm in color-magnitude diagrams. We find that the six target clusters show tidal overdensity features in the radial surface density profiles. There is a break inside the tidal radius for each cluster, and the profile in the outer overdensity region is characterized by a power law. Two-dimensional density maps of all the clusters show distorted asymmetric stellar configurations in the outer region. In five out of the six target clusters, the overdensity features are likely to be associated with the effects of the Galaxy dynamical interaction and the cluster space motions. The observed tidal configurations of stars suggest that several metal-poor clusters in the Galactic bulge are possibly surviving remnants of mergers to build the old stellar system of the Galactic bulge.

Multi-wavelength Study of Blazars Using Variability as a Tool

  • Baliyan, Kiran S.;Kaur, Navpreet;Chandra, Sunil;Sameer, Sameer;Ganesh, Shashikiran
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2016
  • Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at ~109, 8×108, and 2.7×109 M for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

Post-outburst observation of HBC722 in Pelican nebula

  • Yang, Yun-A;Sung, Hyun-Il;Lee, Sang-Gak;Jeon, Young-Beom;Lee, Jung-Eun;Sung, Hwan-Kyung;Kang, Won-Seok;Park, Keun-Hong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.148.1-148.1
    • /
    • 2011
  • We report the result of post-outburst observation of HBC722, the new FU Orionis-like young stellar object (also known as LkHa 188-G4 and PTF 10qpf; A. Miller et al., 2011). We have been monitoring this object since Nov. 2010 with KASINICS (Korean Astronomy and Space Institute Near Infrared Camera System) at Bohyun Optical Astronomy Observatory (BOAO). The observations were performed two times; the first observation was conducted in Nov. 19, 24, and 25, 2010. And the second one was done in March 22 and 25, 2011. We used three filters: J, H, and Ks band. We did aperture photometry with IRAF packages and standardized the photometric result (instrumental magnitude) with 2MASS data that were used as standard stars. As a result, we have found that the brightness of the target decreased in all bands and its colors reddened: the magnitudes and colors of the target are J=10.37, H= 9.49, Ks=8.59, J-H=0.88, and J-Ks=1.36 on Nov. 19, 2010. And those are J=10.81, H=9.81, Ks=9.28, J-H=1.00, and J-Ks=1.53 on March 25, 2011. The previous study showed the similar decrease of brightness in J and H band except for Ks band., They were J= 10.03, H= 9.14, and Ks= 8.65 on Sept. 2010 and those were J= 10.02, H=9.24, and Ks= 8.59 on Nov. 2010. Consequently, we can conclude that HBC722 is fading out continuously from last November to this March.

  • PDF

NEAR-INFRARED VARIABILITY OF OPTICALLY BRIGHT TYPE 1 AGN (가시광에서 밝은 1형 활동은하핵의 근적외선 변광)

  • JEON, WOOYEOL;SHIM, HYUNJIN;KIM, MINJIN
    • Publications of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.47-63
    • /
    • 2021
  • Variability is one of the major characteristics of Active Galactic Nuclei (AGN), and it is used for understanding the energy generation mechanism in the center of AGN and/or related physical phenomena. It it known that there exists a time lag between AGN light curves simultaneously observed at different wavelengths, which can be used as a tool to estimate the size of the area that produce the radiation. In this paper, We present long term near-infrared variability of optically bright type 1 AGN using the Wide-field Infrared Survey Explorer data. From the Milliquas catalogue v6.4, 73 type 1 QSOs/AGN and 140 quasar candidates are selected that are brighter than 18 mag in optical and located within 5 degree around the ecliptic poles. Light curves in the W1 band (3.4 ㎛) and W2 band (4.6 ㎛) during the period of 2010-2019 were constructed for these objects by extracting multi-epoch photometry data from WISE and NEOWISE all sky survey database. Variability was analyzed based on the excess variance and the probability Pvar. Applying both criteria, the numbers of variable objects are 19 (i.e., 26%) for confirmed AGN and 12 (i.e., 9%) for AGN candidates. The characteristic time scale of the variability (τ) and the variability amplitude (σ) were derived by fitting the DRW model to W1 and W2 light curves. No significant correlation is found between the W1/W2 magnitude and the derived variability parameters. Based on the subsample that are identified in the X-ray source catalog, there exists little correlation between the X-ray luminosity and the variability parameters. We also found four AGN with changing W1-W2 color.