• Title/Summary/Keyword: near-infrared

Search Result 1,684, Processing Time 0.028 seconds

Prediction of Germination of Korean Red Pine (Pinus densiflora) Seed using FT NIR Spectroscopy and Binary Classification Machine Learning Methods (FT NIR 분광법 및 이진분류 머신러닝 방법을 이용한 소나무 종자 발아 예측)

  • Yong-Yul Kim;Ja-Jung Ku;Da-Eun Gu;Sim-Hee Han;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.145-156
    • /
    • 2023
  • In this study, Fourier-transform near-infrared (FT-NIR) spectra of Korean red pine seeds stored at -18℃ and 4℃ for 18 years were analyzed. To develop seed-germination prediction models, the performance of seven machine learning methods, namely XGBoost, Boosted Tree, Bootstrap Forest, Neural Networks, Decision Tree, Support Vector Machine, PLS-DA, were compared. The predictive performance, assessed by accuracy, misclassification, and area under the curve (0.9722, 0.0278, and 0.9735 for XGBoost, and 0.9653, 0.0347, and 0.9647 for Boosted Tree), was better for the XGBoost and decision tree models when compared with other models. The 54 wave-number variables of the two models were of high relative importance in seed-germination prediction and were grouped into six spectral ranges (811~1,088 nm, 1,137~1,273 nm, 1,336~1,453 nm, 1,666~1,671 nm, 1,879~2,045 nm, and 2,058~2,409 nm) for aromatic amino acids, cellulose, lignin, starch, fatty acids, and moisture, respectively. Use of the NIR spectral data and two machine learning models developed in this study gave >96% accuracy for the prediction of pine-seed germination after long-term storage, indicating this approach could be useful for non-destructive viability testing of stored seed genetic resources.

Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning (근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류)

  • Yong-Ho Lee;Soo-In Sohn;Sun-Hee Hong;Chang-Seok Kim;Chae-Sun Na;In-Soon Kim;Min-Sang Jang;Young-Ju Oh
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.581-589
    • /
    • 2021
  • Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.

Comparative evaluation of photobiomodulation therapy at 660 and 810 nm wavelengths on the soft tissue local anesthesia reversal in pediatric dentistry: an in-vivo study

  • Ankita Annu;Sujatha Paranna;Anil T. Patil;Sandhyarani B.;Adhithi Prakash;Renuka Rajesh Bhurke
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.23 no.4
    • /
    • pp.229-236
    • /
    • 2023
  • Background: Local anesthesia has been reliably used to control pain during dental procedures and is important in pediatric dentistry. However, children occasionally complain of prolonged numbness after dental treatment, leading to several problems. Studies conducted to reverse the effect of local anesthesia using phentolamine mesylate and photobiomodulation therapy (PBM) are encouraging but limited. PBM is a type of light therapy that utilizes visible and near-infrared non-ionizing electromagnetic spectral light sources. Hence, this study used this modality to compare the reversal of local anesthesia at two different wavelengths. This study compared the effect of PBM at 660 and 810 nm wavelengths on the reversal of soft tissue local anesthesia using a diode LASER in pediatric dentistry. Method: Informed consent and assent were obtained, and the participants were then divided randomly into three groups of 20 children each: control group-without LASER irradiation, LASER irradiation at 660 nm, and LASER irradiation at 810 nm. Sixty children aged 4-8 years with deciduous mandibular molars indicated for pulp therapy were administered an inferior alveolar nerve block. After 45 min of injection, a duration that was similar to the approximate duration of treatment, they were exposed to 660- and 810-nm LASER irradiation according to their groups until reversal of local anesthesia was achieved. The control group did not undergo LASER irradiation. The reversal of the soft tissue local anesthetic effect was evaluated using palpation and pin prick tests every 15 min, and the LASER irradiation cycle continued until reversal of the soft tissue local anesthesia was achieved. Results: A significant reduction of 55.5 min (27.6%) in the mean soft tissue local anesthesia reversal time was observed after the application of 810 nm wavelength PBM and 69 min (34.7%) after 660 nm wavelength LASER irradiation. Conclusion: PBM with a 660 nm wavelength was more effective in reducing the mean soft tissue local anesthesia reversal duration, and thus can be used as a reversal agent for soft tissue local anesthesia in pediatric dentistry.

Utilization of Weather, Satellite and Drone Data to Detect Rice Blast Disease and Track its Propagation (벼 도열병 발생 탐지 및 확산 모니터링을 위한 기상자료, 위성영상, 드론영상의 공동 활용)

  • Jae-Hyun Ryu;Hoyong Ahn;Kyung-Do Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.245-257
    • /
    • 2023
  • The representative crop in the Republic of Korea, rice, is cultivated over extensive areas every year, which resulting in reduced resistance to pests and diseases. One of the major rice diseases, rice blast disease, can lead to a significant decrease in yields when it occurs on a large scale, necessitating early detection and effective control of rice blast disease. Drone-based crop monitoring techniques are valuable for detecting abnormal growth, but frequent image capture for potential rice blast disease occurrences can consume significant labor and resources. The purpose of this study is to early detect rice blast disease using remote sensing data, such as drone and satellite images, along with weather data. Satellite images was helpful in identifying rice cultivation fields. Effective detection of paddy fields was achieved by utilizing vegetation and water indices. Subsequently, air temperature, relative humidity, and number of rainy days were used to calculate the risk of rice blast disease occurrence. An increase in the risk of disease occurrence implies a higher likelihood of disease development, and drone measurements perform at this time. Spectral reflectance changes in the red and near-infrared wavelength regions were observed at the locations where rice blast disease occurred. Clusters with low vegetation index values were observed at locations where rice blast disease occurred, and the time series data for drone images allowed for tracking the spread of the disease from these points. Finally, drone images captured before harvesting was used to generate spatial information on the incidence of rice blast disease in each field.

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Development of a Method for Tracking Sandbar Formation by Weir-Gate Opening Using Multispectral Satellite Imagery in the Geumgang River, South Korea (금강에서 다분광 위성영상을 이용한 보 운영에 따른 모래톱 형성 추적 방법의 개발)

  • Cheolho Lee;Kang-Hyun Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.135-142
    • /
    • 2023
  • A various technology of remote sensing and image analysis are applied to study landscape changes and their influencing factors in stream corridors. We developed a method to detect landscape changes over time by calculating the optical index using multispectral images taken from satellites at various time points, calculating the threshold to delineate the boundaries of water bodies, and creating binarized maps into land and water areas. This method was applied to the upstream reach of the weirs in the Geumgang River to track changes in the sandbar formed by the opening of the weir gate. First, we collected multispectral images with a resolution of 10 m × 10 m taken from the Sentinel-2 satellite at various times before and after the opening of the dam in the Geumgang River. The normalized difference water index (NDWI) was calculated using the green light and near-infrared bands from the collected images. The Otsu's threshold of NDWI calculated to delineate the boundary of the water body ranged from -0.0573 to 0.1367. The boundary of the water area determined by remote sensing matched the boundary in the actual image. A map binarized into water and land areas was created using NDWI and the Otsu's threshold. According to these results of the developed method, it was estimated that a total of 379.7 ha of new sandbar was formed by opening the three weir floodgates from 2017 to 2021 in the longitudinal range from Baekje Weir to Daecheong Dam on the Geumgang River. The landscape detection method developed in this study is evaluated as a useful method that can obtain objective results with few resources over a wide spatial and temporal range.

GOCI-IIVisible Radiometric Calibration Using Solar Radiance Observations and Sensor Stability Analysis (GOCI-II 태양광 보정시스템을 활용한 가시 채널 복사 보정 개선 및 센서 안정성 분석)

  • Minsang Kim;Myung-Sook Park;Jae-Hyun Ahn;Gm-Sil Kang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1541-1551
    • /
    • 2023
  • Radiometric calibration is a fundamental step in ocean color remote sensing since the step to derive solar radiance spectrum in visible to near-infrared wavelengths from the sensor-observed electromagnetic signals. Generally, satellite sensor suffers from degradation over the mission period, which results in biases/uncertainties in radiometric calibration and the final ocean products such as water-leaving radiance, chlorophyll-a concentration, and colored dissolved organic matter. Therefore, the importance of radiometric calibration for the continuity of ocean color satellites has been emphasized internationally. This study introduces an approach to improve the radiometric calibration algorithm for the visible bands of the Geostationary Ocean Color Imager-II (GOCI-II) satellite with a focus on stability. Solar Diffuser (SD) measurements were employed as an on-orbit radiometric calibration reference, to obtain the continuous monitoring of absolute gain values. Time series analysis of GOCI-II absolute gains revealed seasonal variations depending on the azimuth angle, as well as long-term trends by possible sensor degradation effects. To resolve the complexities in gain variability, an azimuth angle correction model was developed to eliminate seasonal periodicity, and a sensor degradation correction model was applied to estimate nonlinear trends in the absolute gain parameters. The results demonstrate the effects of the azimuth angle correction and sensor degradation correction model on the spectrum of Top of Atmosphere (TOA) radiance, confirming the capability for improving the long-term stability of GOCI-II data.

Effect of crude fibre additives ARBOCEL and VITACEL on the physicochemical properties of granulated feed mixtures for broiler chickens

  • Jakub Urban;Monika Michalczuk;Martyna Batorska;Agata Marzec;Adriana Jaroszek;Damian Bien
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.274-283
    • /
    • 2024
  • Objective: The aim of the study was to evaluate the physicochemical properties (nutrient composition, pH, water content and activity, sorption properties) and mechanical properties (compression force and energy) of granulated feed mixtures with various inclusion levels of crude fibre concentrates ARBOCEL and VITACEL for broiler chickens, i.e. +0.0% (control group - group C), +0.3%, +0.8%, +1.0%, +1.2%. Methods: The feed mixtures were analyzed for their physicochemical properties (nutrient composition by near-infrared spectroscopy, pH with the use a CP-401 pH meter with an IJ-44C glass electrode, water content was determined with the drying method and activity was determined with the Aqua Lab Series 3, sorption properties was determined with the static method) and mechanical properties (compression force and energy with the use TA-HD plus texture analyzer). The Guggenheim-Anderson-de Boer (GAB) model applied in the study correctly described the sorption properties of the analyzed feed mixtures in terms of water activity. Results: The fibre concentrate type affected the specific surface area of the adsorbent and equilibrium water content in the GAB monolayer (p≤0.05) (significantly statistical). The type and dose of the fibre concentrate influenced the dimensionless C and k parameters of the GAB model related to the properties of the monolayer and multilayers, respectively (p≤0.05). They also affected the pH value of the analyzed feed mixtures (p≤0.05). In addition, crude fibre type influenced water activity (p≤0.05) as well as compression energy (J) and compression force (N) (p≤0.001) (highly significantly statistical) of the feed mixtures. Conclusion: The physicochemical analyses of feed mixtures with various inclusion levels (0.3%, 0.8%, 1.0%, 1.2%) of crude fiber concentrates ARBOCEL or VITACEL demonstrated that both crude fiber types may be used in the feed industry as a feedstuff material to produce starter type mixtures for broiler chickens.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

An IRS Study on the Adsorption of Carbonmonoxide on Silica Supported Ni-Cu Alloys (실리카 지지 니켈-구리 합금에서 일산화탄소의 흡착에 관한 IRS 연구)

  • Ahn, Jeong-Soo;Yoon, Koo-Sik;Park, Sang-Youn;Park, Sung-Kyun
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.233-243
    • /
    • 2009
  • We have investigated the infrared spectra for CO adsorbed on silica supported nickel(Ni-Si$O_2$), silica supported copper(Cu-Si$O_2$), silica supported nickel-copper alloys(Ni/Cu-Si$O_2$) of several compositions with varying CO pressures(0.2 $torr{\sim}$50 torr) at room temperature and on pumping to vacumn at room temperature within the frequency range of 1500 $cm^{-1}{\sim}2500\;cm^{-1}$. Four bands(2059.6 $cm^{-1},\;{\sim}$2036.5 $cm^{-1},\;{\sim}$ 1868.7 $cm^{-1},\;{\sim}$ 1697.1 $cm^{-1}$) were observed for Ni-Si$O_2$, two bands($\sim$2115.5 $cm^{-1},\;{\sim}$1743.0 $cm^{-1}$) were observed for Cu-Si$O_2$ and five bands(${\sim}2123.2\;cm^{-1}$, 2059.6 $cm^{-1},\;{\sim}$2036.4 $cm^{-1},\;{\sim}$1899.5 $cm^{-1},\;{\sim}$1697.1 $cm^{-1}$) were observed for Ni/Cu-Si$O_2$. These absorption bands correspond with those of the previous reports approximately. The bands below 1800 $cm^{-1}$ were only observed with Ni metal or Ni/Cu alloy crystal plane containing step at room temperature and the ${\sim}1697.1\;cm^{-1}$ bands observed with Ni-Si$O_2$ and Ni/Cu-Si$O_2$ may be ascribed to CO molecule adsorbed on the adsorption sites near step. The bands below 2000 $cm^{-1}$ were rarely observed with Cu metal crystal plane at room temperature and the 1743.0 $cm^{-1}$ bands may be ascribed to CO molecule adsorbed on the adsorption sites near step. The band shifts of adsorbed CO with varing Cu contents from 0 to 0.5 mole fraction at the same CO pressure or at the same pumping time to vacumn were below 21 $cm^{-1}$. and comparatively small than those with other ⅠB metal addition. It may means ligand effect of Cu d electron is small.