• Title/Summary/Keyword: near-fault earthquakes

Search Result 107, Processing Time 0.024 seconds

Reliability Assessment of Long-Period Cable-Stayed Bridges on Near Fault Earthquake(NFE) (근거리지진에서 장주기사장교의 신뢰성평가)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.44-48
    • /
    • 2012
  • The seismic safety of long-period cable-stayed bridges is assessed by probabilistic finite element analysis and reliability analysis under NFE. The structural response of critical members of cable-stayed bridges is evaluated using the developed probabilistic analysis algorithm. In this study, the real earthquake recording(Chi-Chi Earthquake; 1997) was selected as the input NFE earthquake for investigating response characteristics. The probabilistic response and reliability index shows the different aspect comparing the result from FFE earthquake. Therefore, the probabilistic seismic safety assessment on NFE earthquakes should be performed for the exact evaluation of long-period cable-stayed bridges and the earthquake resistant design criteria should be complemented.

Effect of soil-structure interaction for a building isolated with FPS

  • Krishnamoorthy, A.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.285-297
    • /
    • 2013
  • The effect of soil structure interaction (SSI) on seismic response of a multi-degree-of-freedom structure isolated with a friction pendulum system (FPS) is studied. In the analysis, the soil is considered as an elastic continuum and is modeled using the finite element method. The effect of SSI on response of the structure is evaluated for twenty far-field and twenty near-fault earthquake ground motions. The effect of friction coefficient of sliding material of FPS on SSI is also studied. The results of the study show that the seismic response of the structure increases for majority of the earthquake ground motions due to SSI. The sliding displacement and base shear are underestimated if SSI effects are ignored in the seismic analysis of structures isolated with FPS.

Distribution of near-fault input energy over the height of RC frame structures and its formulation

  • Taner Ucar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Energy-based seismic design and evaluation methods are promising to be involved in the next generation design codes. Accordingly, determining the distribution of earthquake input energy demand among floor levels is quite imperative in order to develop an energy-based seismic design procedure. In this paper, peak floor input energy demands are achieved from relative input energy response histories of several reinforced concrete (RC) frames. A set of 22 horizontal acceleration histories selected from recorded near-fault earthquakes and scaled in time domain to be compatible with the elastic acceleration design spectra of Turkish Seismic Design Code are used in time history analyses. The distribution of the computed input energy per mass values and the arithmetic means through the height of the considered RC frames are presented as a result. It is found that spatial distribution of input energy per mass is highly affected by the number of stories. Very practical yet consistent formulation of distributing the total input energy to story levels is achieved, as a most important contribution of the study.

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Analysis of soft deformation limitation of base-isolated structures

  • Jinwei Jiang;Baoyang Yang
    • Earthquakes and Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • Isolation technology has been proven effective in reducing the seismic response of superstructures, where most of the deformation is concentrated in the isolation layer. However, in cases of earthquakes with intensities surpassing the fortification level of the area, or severe near-fault earthquakes, the isolation layer may experience excessive deformation, resulting in damage to the isolation bearings or collisions with the retaining wall or surrounding buildings. In this study, a finite element model using ABAQUS is established and compared with experimental test results to deeply investigate the influence of limit devices on the isolation layer and its response to the superstructure. The findings reveal that a larger limiter stiffness and a smaller reserved gap can achieve a more effective limiting effect. Nevertheless, a smaller reserved gap and a larger limiter stiffness may result in increased response of the superstructure. Therefore, rational selection of the reserved gap and limiter stiffness is crucial to reduce the acceleration response.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

Response Analysis of RC Bridge Pier with Various Superstructure Mass under Near-Fault Ground Motion (근단층지반운동에 대한 상부구조 질량 변화에 따른 RC 교각의 응답분석)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.667-673
    • /
    • 2010
  • The near fault ground motion (NFGM) is characterized by a single long period velocity pulse with large magnitude. NFGMs have been observed in recent strong earthquakes, Northridge (1994), Japan Kobe (1995), Turkey Izmit (1999), China Sichuan (2008), Haiti (2010) etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far field ground motion (FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this research is to investigate and analyze the seismic response of reinforced concrete bridge piers subjected to near-fault ground motions. The seismic performance of six RC bridge piers depending on three confinement steel ratios and three superstructure mass was investigated on the shaking table. From these experimental results, it was confirmed that the reduction of seismic performance was observed for test specimens with lower confinement steel ratio or more deck weight. The displacement ductility of RC bridge piers in terms of the stiffness degradation is proposed based on test results the shaking table.

Structural damage distribution induced by Wenchuan Earthquake on 12th May, 2008

  • Jia, Junfeng;Song, Nianhua;Xu, Zigang;He, Zizhao;Bai, Yulei
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.93-109
    • /
    • 2015
  • Based on the reconnaissance of buildings in Dujiangyan City during 2008 Wenchuan earthquake, China, structural damage characteristics and the spatial distribution of structural damage are investigated, and the possible reasons for the extraordinary features are discussed with consideration of the influence of urban historical evolution and spatial variation of earthquake motions. Firstly, the urban plan and typical characteristics of structural seismic damage are briefly presented and summarized. Spatial distribution of structural damage is then comparatively analyzed by classifying all surveyed buildings in accordance with different construction age, considering the influence of seismic design code on urban buildings. Finally, the influences of evolution of seismic design code, topographic condition, local site and distance from fault rupture on spatial distribution of structural damage are comprehensively discussed. It is concluded that spatial variation of earthquake motions, resulting from topography, local site effect and fault rupture, are very important factor leading to the extraordinary spatial distribution of building damage except the evolution of seismic design codes. It is necessary that the spatial distribution of earthquake motions should be considered in seismic design of structures located in complicated topography area and near active faults.

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes

  • Oncu-Davas, Seda;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.227-242
    • /
    • 2019
  • Seismic isolation systems employ structural control that protect both buildings and vibration-sensitive contents from destructive effects of earthquakes. Structural control is divided into three main groups: passive, active, and semi-active. Among them, semi-active isolation systems, which can reduce floor displacements and accelerations concurrently, has gained importance in recent years since they don't require large power or pose stability problems like active ones. However, their seismic performance may vary depending on the variations that may be observed in the mechanical properties of semi-active devices and/or seismic isolators. Uncertainties relating to isolators can arise from variations in geometry, boundary conditions, material behavior, or temperature, or aging whereas those relating to semi-active control devices can be due to thermal changes, inefficiencies in calibrations, manufacturing errors, etc. For a more realistic evaluation of the seismic behavior of semi-active isolated buildings, such uncertainties must be taken into account. Here, the probabilistic behavior of semi-active isolated buildings under historical pulse-like near-fault earthquakes is evaluated in terms of their performance in preserving structural integrity and protecting vibration-sensitive contents considering aforementioned uncertainties via Monte-Carlo simulations of 3-story and 9-story semi-active isolated benchmark buildings. The results are presented in the form of fragility curves and probability of failure profiles.