• Title/Summary/Keyword: near-duplicate detection

Search Result 8, Processing Time 0.019 seconds

Concentric Circle-Based Image Signature for Near-Duplicate Detection in Large Databases

  • Cho, A-Young;Yang, Won-Keun;Oh, Weon-Geun;Jeong, Dong-Seok
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.871-880
    • /
    • 2010
  • Many applications dealing with image management need a technique for removing duplicate images or for grouping related (near-duplicate) images in a database. This paper proposes a concentric circle-based image signature which makes it possible to detect near-duplicates rapidly and accurately. An image is partitioned by radius and angle levels from the center of the image. Feature values are calculated using the average or variation between the partitioned sub-regions. The feature values distributed in sequence are formed into an image signature by hash generation. The hashing facilitates storage space reduction and fast matching. The performance was evaluated through discriminability and robustness tests. Using these tests, the particularity among the different images and the invariability among the modified images are verified, respectively. In addition, we also measured the discriminability and robustness by the distribution analysis of the hashed bits. The proposed method is robust to various modifications, as shown by its average detection rate of 98.99%. The experimental results showed that the proposed method is suitable for near-duplicate detection in large databases.

A Post-Verification Method of Near-Duplicate Image Detection using SIFT Descriptor Binarization (SIFT 기술자 이진화를 이용한 근-복사 이미지 검출 후-검증 방법)

  • Lee, Yu Jin;Nang, Jongho
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.699-706
    • /
    • 2015
  • In recent years, as near-duplicate image has been increasing explosively by the spread of Internet and image-editing technology that allows easy access to image contents, related research has been done briskly. However, BoF (Bag-of-Feature), the most frequently used method for near-duplicate image detection, can cause problems that distinguish the same features from different features or the different features from same features in the quantization process of approximating a high-level local features to low-level. Therefore, a post-verification method for BoF is required to overcome the limitation of vector quantization. In this paper, we proposed and analyzed the performance of a post-verification method for BoF, which converts SIFT (Scale Invariant Feature Transform) descriptors into 128 bits binary codes and compares binary distance regarding of a short ranked list by BoF using the codes. Through an experiment using 1500 original images, it was shown that the near-duplicate detection accuracy was improved by approximately 4% over the previous BoF method.

Efficient and Privacy-Preserving Near-Duplicate Detection in Cloud Computing (클라우드 환경에서 검색 효율성 개선과 프라이버시를 보장하는 유사 중복 검출 기법)

  • Hahn, Changhee;Shin, Hyung June;Hur, Junbeom
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1112-1123
    • /
    • 2017
  • As content providers further offload content-centric services to the cloud, data retrieval over the cloud typically results in many redundant items because there is a prevalent near-duplication of content on the Internet. Simply fetching all data from the cloud severely degrades efficiency in terms of resource utilization and bandwidth, and data can be encrypted by multiple content providers under different keys to preserve privacy. Thus, locating near-duplicate data in a privacy-preserving way is highly dependent on the ability to deduplicate redundant search results and returns best matches without decrypting data. To this end, we propose an efficient near-duplicate detection scheme for encrypted data in the cloud. Our scheme has the following benefits. First, a single query is enough to locate near-duplicate data even if they are encrypted under different keys of multiple content providers. Second, storage, computation and communication costs are alleviated compared to existing schemes, while achieving the same level of search accuracy. Third, scalability is significantly improved as a result of a novel and efficient two-round detection to locate near-duplicate candidates over large quantities of data in the cloud. An experimental analysis with real-world data demonstrates the applicability of the proposed scheme to a practical cloud system. Last, the proposed scheme is an average of 70.6% faster than an existing scheme.

Content-based Video Retrieval for Illegal Copying Contents Detection using Hashing (Hashing을 이용한 불법 복제 콘텐츠 검출을 위한 내용 기반 영상 검색)

  • Son, Heusu;Byun, Sung-Woo;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1358-1363
    • /
    • 2018
  • As the usage of the Internet grows and digital media become more diversified, it has become much easier for digital contents to be distributed and shared. This makes easier to access the desired digital contents. On the other hand, there is an increasing need to protect the copyright of digital works. There are some prevalent ways to protect ownership, but they accompany several disadvantages. Among those ways, watermarking methods have the advantage of ensuring invisibility, but they also have a disadvantage that they are vulnerable to external attacks such as a noise and signal processing. In this paper, we propose the detecting method of illegal contents that is robust against external attacks to protect digital works. We extract HSV and LBP features from images and use Euclidian-based hashing techniques to shorten the searching time on high-dimensional and near-duplicate videos. According to the results, the proposed method showed higher detection rates than that of the Watermarking techniques in terms of the images with fabrications or deformations.

Content based Video Copy Detection Using Spatio-Temporal Ordinal Measure (시공간 순차 정보를 이용한 내용기반 복사 동영상 검출)

  • Jeong, Jae-Hyup;Kim, Tae-Wang;Yang, Hun-Jun;Jin, Ju-Kyong;Jeong, Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • In this paper, we proposed fast and efficient algorithm for detecting near-duplication based on content based retrieval in large scale video database. For handling large amounts of video easily, we split the video into small segment using scene change detection. In case of video services and copyright related business models, it is need to technology that detect near-duplicates, that longer matched video than to search video containing short part or a frame of original. To detect near-duplicate video, we proposed motion distribution and frame descriptor in a video segment. The motion distribution descriptor is constructed by obtaining motion vector from macro blocks during the video decoding process. When matching between descriptors, we use the motion distribution descriptor as filtering to improving matching speed. However, motion distribution has low discriminability. To improve discrimination, we decide to identification using frame descriptor extracted from selected representative frames within a scene segmentation. The proposed algorithm shows high success rate and low false alarm rate. In addition, the matching speed of this descriptor is very fast, we confirm this algorithm can be useful to practical application.

Detecting near-duplication Video Using Motion and Image Pattern Descriptor (움직임과 영상 패턴 서술자를 이용한 중복 동영상 검출)

  • Jin, Ju-Kyong;Na, Sang-Il;Jenong, Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.107-115
    • /
    • 2011
  • In this paper, we proposed fast and efficient algorithm for detecting near-duplication based on content based retrieval in large scale video database. For handling large amounts of video easily, we split the video into small segment using scene change detection. In case of video services and copyright related business models, it is need to technology that detect near-duplicates, that longer matched video than to search video containing short part or a frame of original. To detect near-duplicate video, we proposed motion distribution and frame descriptor in a video segment. The motion distribution descriptor is constructed by obtaining motion vector from macro blocks during the video decoding process. When matching between descriptors, we use the motion distribution descriptor as filtering to improving matching speed. However, motion distribution has low discriminability. To improve discrimination, we decide to identification using frame descriptor extracted from selected representative frames within a scene segmentation. The proposed algorithm shows high success rate and low false alarm rate. In addition, the matching speed of this descriptor is very fast, we confirm this algorithm can be useful to practical application.

An Efficient Block Index Scheme with Segmentation for Spatio-Textual Similarity Join

  • Xiang, Yiming;Zhuang, Yi;Jiang, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3578-3593
    • /
    • 2017
  • Given two collections of objects that carry both spatial and textual information in the form of tags, a $\text\underline{S}patio$-$\text\underline{T}extual$-based object $\text\underline{S}imilarity$ $\text\underline{JOIN}$ (ST-SJOIN) retrieves the pairs of objects that are textually similar and spatially close. In this paper, we have proposed a block index-based approach called BIST-JOIN to facilitate the efficient ST-SJOIN processing. In this approach, a dual-feature distance plane (DFDP) is first partitioned into some blocks based on four segmentation schemes, and the ST-SJOIN is then transformed into searching the object pairs falling in some affected blocks in the DFDP. Extensive experiments on real and synthetic datasets demonstrate that our proposed join method outperforms the state-of-the-art solutions.

The Optimization of Near Duplicate Detection Using Representative Unigram Grouping (대표 Unigram 군집화를 통한 유사중복문서 검출 최적화)

  • Kwon, Young-Hyun;Yun, Do-Hyun;Ahn, Young-Min
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.291-293
    • /
    • 2012
  • SNS, 블로그의 이용이 늘어나면서, 문서의 복제와 재생산이 빈번하게 발생함에 따라 대용량 문서에서의 유사중복문서 검출이 큰 이슈로 제기되고 있다. 본 논문에서는 한국어 문서를 대상으로 이러한 문제를 해결하기 위해 품질을 유지하면서 신속하게 문서집합 중 유사중복문서를 검출하는 방법에 대해 제안한다. 제안하는 알고리즘에서는 문서를 대표하는 고빈도 Unigram Token을 활용하여 문서를 군집화함으로써 비교 대상을 최소화 하였다. 실험결과, 76만 문서에서 기존 방법 대비 평균 0.88의 Recall을 유지하면서도 중복을 검출하는데 있어서 십수초내에 처리가 가능함을 보였다. 향후 대용량 검색시스템 및 대용량 이미지, 동영상 유사중복 검출에도 활용할 수 있을 것으로 기대한다.