Fourier transform-near infrared (FT-NIR) spectroscopy is a simple, rapid, non-destructive technique which can be used to make quantitative analysis of chemical composition in grain. An interest in total dietary fiber (TDF) of grain such as rice has been increased due to its beneficial effects for health. Since measuring methods for TDF content were highly depending on experimental technique and time consumptions, the application of FT-NIR spectroscopy to determine TDF content in milled rice. Results of enzymatic-gravimetric method were $1.17-1.92\%$ Partial least square (PLS) regression on raw NIR spectra to predict TDF content was developed Accuracy of prediction model for TDF content was certified for regression coefficient (r), standard error of estimation (SEE) and standard error of prediction (SEP). The r, SEE and SEP were 0.9705, 0.0464, and 0.0604, respectively. The results indicated that FT-NIR techniques could be very useful in the food industry and rice processing complex for determination of TDF in milled rice on real time analysis.
Nondestructive evaluation of seed viability is one of the highly demanding technologies for seed production industry. Conventional seed sorting technologies, such as tetrazolium and standard germination test are destructive, time consuming, and labor intensive methods. Near infrared spectroscopy technique has shown good potential for nondestructive quality measurements for food and agricultural products. In this study, FT-NIR spectroscopy was used to classify normal and artificially aged lettuce seeds. The spectra with the range of 1100~2500 nm were scanned for lettuce seeds and analyzed using the principal component analysis(PCA) method. To classify viable seeds from nonviable seeds, a calibration modeling set was developed with a partial least square(PLS) method. The calibration model developed from PLS resulted in 98% classification accuracy with the Savitzky-Golay $1^{st}$ derivative preprocessing method. The prediction accuracy for the test data set was 93% with the MSC(Multiplicative Scatter Correction) preprocessing method. The results show that FT-NIR has good potential for discriminating non-viable lettuce seeds from viable ones.
The measurement values of proximate composition in fresh ginseng could provide the important information for red ginseng processing. The measurement of them were performed by near-infrared (NIR) spectroscopy. Linear regression model for the predicting of proximate composition was developed and validated. The regression values of moisture, crude starch, crude ash, crude fiber, calcium, and magnesium contents were shown as 0.918, 0.951, 0.897, 0.728, 0.933, and 0.390, respectively. Therefore, the proximate composition of fresh ginseng could be measured by NIR, feasibly.
Dambergs, Robert G.;Kambouris, Ambrosias;Schumacher, Nathan;Francis, I. Leigh;Esler, Michael B.;Gishen, Mark
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1253-1253
/
2001
The ability to accurately assess wine quality is important during the wine making process, particularly when allocating batches of wines to styles determined by consumer requirements. Grape payments are often determined by the quality category of the wine that is produced from them. Wine quality, in terms of sensory characteristics, is normally a subjective measure, performed by experienced winemakers, wine competition judges or winetasting panellists. By nature, such assessments can be biased by individual preferences and may be subject to day-to-day variation. Taste and aroma compounds are often present in concentrations below the detection limit of near infrared (NIR) spectroscopy but the more abundant organic compounds offer potential for objective quality grading by this technique. Samples were drawn from one of Australia's major wine shows and from BRL Hardy's post-vintage wine quality allocation tastings. The samples were scanned in transmission mode with a FOSS NIR Systems 6500, over the wavelength range 400-2500 ㎚. Data analysis was performed with the Vision chemometrics package. With samples from the allocation tastings, the best correlations between NIR spectra and tasting data were obtained with dry red wines. These calibrations used loadings in the wavelengths related to anthocyanins, ethanol and possibly tannins. Anthocyanins are a group of compounds responsible for colour in red wines - restricting the wavelengths to those relating to anthocyanins produced calibrations of similar accuracy to those using the full wavelength range. This was particularly marked with Merlot, a variety that tends to have relatively lower anthocyanin levels than Cabernet Sauvignon and Shiraz. For dry white wines, calibrations appeared to be more dependent on ethanol characteristics of the spectrum, implying that quality correlated with fruit maturity. The correlations between NIR spectra and sensory data obtained using the wine show samples were less significant in general. This may be related to the fact that within most classes in the show, the samples may span vintages, glowing areas and winemaking styles, even though they may be made from only one grape variety. For dry red wines, the best calibrations were obtained with a class of Pinot Noir - a variety that tends to be produced in limited areas in Australia and would represent the least matrix variation. Good correlations were obtained with a tawny port class - these wines are sweet, fortified wines, that are aged for long periods in wooden barrels. During the ageing process Maillard browning compounds are formed and the water is lost through the barrels in preference to ethanol, producing “concentrated” darkly coloured wines with high alcohol content. These calibrations indicated heaviest loadings in the water regions of the spectrum, suggesting that “concentration” of the wines was important, whilst the visible and alcohol regions of the spectrum also featured as important factors. NIR calibrations based on sensory scores will always be difficult to obtain due to variation between individual winetasters. Nevertheless, these results warrant further investigation and may provide valuable Insight into the main parameters affecting wine quality.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1091-1091
/
2001
Previous reports have shown that Near Infrared Spectroscopy (NIRS) can be used to assess physical and chemical properties of flax fibre and fabric quality. Currently, spinners assess yarn quality mainly based on strength and regularity measurements. There two key characteristics are influenced by quality of raw fibres used, especially the degree of rotting and strength. The aim of this investigation was to evaluate the use of NIRS for assessing quality of weft grade yarn available on the commercial market. In order to develop the NIR calibrations, a range of samples representing poor, medium and good quality weft yarn samples was included in the calibration and validation sample sets. The samples were analysed for physical and chemical parameters including caustic weight loss, fibre fractions, lipid, ash and minerals. A detailed protocol for assessing yarn quality has been developed to maximize the accuracy of the reflectance spectra. The development of partial least squares regression models and validation of the calibration equations using blind samples will be presented and discussed.
Seo, Young-Wook;Ahn, Chi Kook;Lee, Hoonsoo;Park, Eunsoo;Mo, Changyeun;Cho, Byoung-Kwan
Journal of Biosystems Engineering
/
v.41
no.1
/
pp.51-59
/
2016
Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of $9080-4150cm^{-1}$ (1400-2400 nm) and $1800-970cm^{-1}$, respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and $1^{st}$ and $2^{nd}$ derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.
Seo, Sang-Hyun;Park, Woo-Churl;Cho, Rae-Kwang;Xiaori Han
Near Infrared Analysis
/
v.1
no.1
/
pp.31-35
/
2000
Near-infrared reflectance spectroscopy(NIRS) was used to determine the humic acids in soil samples from the fields of different crops and land-use over Youngnam and Honam regions in Korea. An InfraAlyzer 500 scanning spectrophotometer was obtained near infrared relectance spectra of soil at 2-nm intervals from 1100 to 2500nm. Multiple linear regression(MLR) or partial least square regression (PLSR) was used to evaluate a NIRS method for the rapid and nondestructive determination of humic acid, fulvic acid and its total contents in soils. The raw spectral data(log 1/R) can be used for estimating humic acid, fulvic acid and its total contents in soil by MLR procedure between the content of a given constituent and the spectral response of several bands. In which the predicted results for fulvic acid is the best in the constituents. The new spectral data are converted from the raw spectra by PLSR method such as the first derivative of each spectrum can also be used to predict humic acid and fulvic acid of the soil samples. A low SEC, SEP and a high coefficient of correlation in the calibration and validation stages enable selection of the best manipulation. But a simple calibration and prediction method for determining humic acid and fulvic acid should be selected under similar accuracy and precision of prediction. NIRS technique may be an effective method for rapid and nondestructive determination for humic acid, fulvic acid and its total contents in soils.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1618-1618
/
2001
Predicting quality traits using near infrared (NIR) spectroscopy on whole grain samples has gained wide acceptance as a non-destructive, rapid and cost effective technique. Barley breeding programs throughout southern Australia currently use this technology as a tool for selecting malting quality lines. For the past 3 years whole grain barley calibrations have been developed at VIDA to predict malting quality traits in the early generation selections of the breeding program. More recently calibrations for whole grain malt have been developed and introduced to aid in selecting malted samples at the mid-generation stage for more complex malting quality traits. Using the same population set, barley and malt calibrations were developed to predict hot water extracts (EBC and IoB), diastatic power, free $\alpha$-amino nitrogen, soluble protein, wort $\beta$-glucan and $\beta$-glucanase. The correlation coefficients between NIR predicted values and laboratory methods for malt were all highly significant ($R^2$ > 0.84), whereas the correlation coefficients for the barley calibrations were lower ($R^2$ > 0.57) but still significant. The magnitude of the error in predicting hot water extract, diastatic power and wort $\beta$-glucan using whole grain malt was reduced by 50% when compared with predicting the same trait using whole grain barley. This can be explained by the complex nature of attempting to develop calibrations on whole grain barley utilizing malt data. During malting, the composition of barley is modified by the action of enzymes throughout the steeping and germination stages and by heating during the kilning stage. Predicting malting quality on whole grain malt is a more reliable alternative to predicting whole grain barley, although there is the added expense of micro-malting the samples. The ability to apply barley and malt calibrations to different generations is an advantage to a barley breeding program that requires thousands of samples to be assessed each year.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1127-1127
/
2001
The transfer of predictive models using various chemometric techniques has been reported for FTNIR and scanning-grating based NIR instruments with respect relatively dry samples (<10% water). Some of the currently used transfer techniques include slope and bias correction (SBC), direct standardization (DS), piecewise direct standardization (PDS), orthogonal signal correction (OSC), finite impulse transform (FIR) and wavelet transform (WT) and application of neural networks. In a previous study (Greensill et at., 2001) on calibration transfer for wet samples (intact melons) across silicon diode array instrumentation, we reported on the performance of various techniques (SBC, DS, PDS, double window PDS (DWPDS), OSC, FIR, WT, a simple photometric response correction and wavelength interpolative method and a model updating method) in terms of RMSEP and Fearns criterion for comparison of RMSEP. In the current study, we compare these melon transfer results to a similar study employing pairs of spectrometers for non-invasive prediction of soluble solid content of peaches.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1011-1011
/
2001
In general, NIR reflectance spectra (whether recorded using log(1/R) or the Kubelka-Munk function) are not linear functions of the concentration of the absorbers which we are measuring. There are several causes for this non-linearity, the most commonly cited one being front surface reflection. However, non-linearity also arises from the effects of particle size, sample thickness, void fraction, and experimental arrangement. In this talk, we will attempt to isolate the effects of the various causes, and show the effects of each, using both theoretical calculations and actual data. The listener should then be able to assess where we stand in our quest to produce “linear” data through pre-processing and/or alternate collection schemes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.