• 제목/요약/키워드: near fault earthquake

검색결과 109건 처리시간 0.021초

근거리지진에서 장주기사장교의 신뢰성평가 (Reliability Assessment of Long-Period Cable-Stayed Bridges on Near Fault Earthquake(NFE))

  • 방명석
    • 한국안전학회지
    • /
    • 제27권1호
    • /
    • pp.44-48
    • /
    • 2012
  • The seismic safety of long-period cable-stayed bridges is assessed by probabilistic finite element analysis and reliability analysis under NFE. The structural response of critical members of cable-stayed bridges is evaluated using the developed probabilistic analysis algorithm. In this study, the real earthquake recording(Chi-Chi Earthquake; 1997) was selected as the input NFE earthquake for investigating response characteristics. The probabilistic response and reliability index shows the different aspect comparing the result from FFE earthquake. Therefore, the probabilistic seismic safety assessment on NFE earthquakes should be performed for the exact evaluation of long-period cable-stayed bridges and the earthquake resistant design criteria should be complemented.

완만한 곡선형 이력거동을 이용한 강도감소계수의 평가 (Evaluation of Strength Reduction Factors using Smooth Hysteretic Behavior)

  • 송종걸
    • 한국지진공학회논문집
    • /
    • 제14권4호
    • /
    • pp.49-60
    • /
    • 2010
  • 구조부재와 구조시스템의 실제 비탄성 이력거동은 완만한 형태를 나타낸다. 완만한 곡선형 이력거동이 이선형 또는 분할선형 강성저하모델등에 비하여 실제 거동을 정확하게 나타낸다. 내진설계에서 강도감소계수는 탄성 거동만 허용한 경우에 요구되는 강도를 설계수준의 강도로 감소시키는데 사용된다. 강도감소계수에 대한 완만한 곡선이력거동의 영향을 근거리 지진과 원거리 지진을 받는 몇 가지 완만한 곡선이력 시스템에 대하여 평가하였다. 설계 목적을 위하여 이력거동의 완만정도와 근거리와 원거리 지진으로 대변될 수 있는 지진특성을 고려하는 간단한 강도감소계수 식을 제안하였다. 본 연구의 제안식에 의한 강도감소계수가 기존의 제안식에 의해 평가된 강도감소계수보다 비탄성 응답스펙트럼 해석으로부터 직접적으로 구한 강도감소계수에 근접한 결과를 나타낸다.

Structural damage distribution induced by Wenchuan Earthquake on 12th May, 2008

  • Jia, Junfeng;Song, Nianhua;Xu, Zigang;He, Zizhao;Bai, Yulei
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.93-109
    • /
    • 2015
  • Based on the reconnaissance of buildings in Dujiangyan City during 2008 Wenchuan earthquake, China, structural damage characteristics and the spatial distribution of structural damage are investigated, and the possible reasons for the extraordinary features are discussed with consideration of the influence of urban historical evolution and spatial variation of earthquake motions. Firstly, the urban plan and typical characteristics of structural seismic damage are briefly presented and summarized. Spatial distribution of structural damage is then comparatively analyzed by classifying all surveyed buildings in accordance with different construction age, considering the influence of seismic design code on urban buildings. Finally, the influences of evolution of seismic design code, topographic condition, local site and distance from fault rupture on spatial distribution of structural damage are comprehensively discussed. It is concluded that spatial variation of earthquake motions, resulting from topography, local site effect and fault rupture, are very important factor leading to the extraordinary spatial distribution of building damage except the evolution of seismic design codes. It is necessary that the spatial distribution of earthquake motions should be considered in seismic design of structures located in complicated topography area and near active faults.

PROBABILISTIC APPROACH ON SEISMOGENIC POTENTIAL OF A FAULT

  • Chang, Chun-Joong
    • Nuclear Engineering and Technology
    • /
    • 제43권5호
    • /
    • pp.437-446
    • /
    • 2011
  • Siting criteria for nuclear power plants require that faults be characterized as to their potential for generating earthquakes, or that the absence of the potential for these occurrences be demonstrated. Because the definition of active faults in Korea has been applied by the deterministic method, which depends on the numerical age of fault movement, the possibility of inherent uncertainties exists in determining the maximum earthquake from the fault sources for seismic design. In an attempt to overcome these problems this study suggests new criteria and a probabilistic quantitative diagnostic procedure that could estimate whether a fault is capable of generating earthquakes in the near future.

강사장교의 지진응답특성 및 내진 안전성 평가 (The Earthquake Response Characteristics and Seismic Safety Evaluation of Steel Cable Stayed Bridges)

  • 한성호;신재철;최진우
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.435-454
    • /
    • 2007
  • 본 연구에서는 국내 내진 설계규정에서 고려하고 있지 않은 근거리지진의 특성을 규명하고, 사장교 구조물에 미치는 영향을 검토하고자 한다. 대표적인 근거리 및 원거리지진의 실측자료를 선정한 후, 탄성 및 비탄성응답스펙트럼을 작성하여 지진기록의 특성을 분석하였다. 세 가지 형식의 사장교 및 실제 사장교 구조물을 대상으로 지진특성에 따른 응답해석을 수행하여 주요부재에 대한 응답특성을 비교 분석하였다. 또한 지진응답해석 결과를 이용하여 신뢰성해석을 수행하였으며, 신뢰성지수 및 파괴확률을 검토함으로써 대상 사장교 구조물의 내진 안전성을 정량적으로 평가하였다. 응답스펙트럼, 지진응답해석 및 신뢰성해석 결과에 의하면 근거리지진이 사장교 응답에 대한 영향은 기존의 원거리지진과는 상이한 양상을 보이고 있으므로, 사장교 구조물 설계 시 중요한 인자로 고려해야 할 것을 제시하고자 한다.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • 제86권5호
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

Base-isolated building with high-damping spring system subjected to near fault earthquakes

  • Tornello, Miguel Eduardo;Sarrazin, Mauricio
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.315-340
    • /
    • 2012
  • There are many types of seismic isolation devices that are being used today for structural control of earthquake response in buildings. The most commonly used are sliding bearings and elastomeric bearings, the latter with or without lead core. An alternative solution is the use of steel springs combined with viscoelastic fluid dampers, which is the case discussed in this paper. An analytical study of a three-story building supported on helical steel springs and viscoelastic fluid dampers, GERB Control System (GCS), subjected to near-fault earthquakes is presented. Several earthquakes records have been obtained by the acceleration network installed in the isolated building and in its non-isolated twin since they were finished. These experimental results are analysed and discussed. The aim is to show that the spring-based system can be an alternative for base isolation of small building located near active faults.

안정대륙권역의 중규모지진에 의한 근단층지반운동의 모델링 (Modeling of Near Fault Ground Motion due to Moderate Magnitude Earthquakes in Stable Continental Regions)

  • 김정한;김재관
    • 한국지진공학회논문집
    • /
    • 제10권3호
    • /
    • pp.101-111
    • /
    • 2006
  • 이 논문에서는 안정대륙권역(Stable Continental Regions, SCRs)에서의 중규모 지진에 의한 근단층지반운동(Near Fault Ground Motion, NFGM) 모델을 처음으로 제시한다. 근단층지반운동은 큰 진폭의 장주기 속도 펄스를 갖는 특징을 가지고 있다. 이 속도 펄스를 모델링하기 위해서는 그 주기와 진폭을 지진의 규모와 단층거리의 함수로 표현할 수 있어야 한다. 그런데 안정대륙권역에서는 관측 자료가 빈약하여 지진데이터로부터 이 관계식을 직접 유도하는 것은 어렵기 때문에 이 연구에서는 간접적인 접근법을 채택하였다. 속도 펄스의 주기와 진폭은 단층파열의 상승시간과 파열속도의 함수임이 알려져 있고 활성구조권역(Active Tectonic Regions, ATRs)에 속하는 미국 서부지역에서는 실험적 공식이 확립되어 있다. 안정대륙권역에서의 상승시간과 단층파열속도의 지진규모에 대한 함수관계는 WUS와 CEUS에서의 자료를 비교하여 도출하였다. 이 관계식들로부터 안정대륙권역에서의 NFGM의 속도 펄스의 주기와 진폭을 지진규모 및 단층 거리에 대한 관계식으로 유도하였다. 안정대륙권역에서의 NFGM의 가속도 시간이력은 추계학적으로 생성된 원역지진지반가속도에 새로운 관계식에 의한 속도 펄스를 중첩하여 얻어진다. 적용 예제로서 탄소성 단자유도 시스템의 근단층지반운동에 대한 응답을 분석하였다.

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

추계학적 지진동 모사에서 유한단층 모델의 민감도 분석 (Sensitivity Analysis of Finite Fault Model in Stochastic Ground Motion Simulations)

  • 이상현;이준기
    • 한국지진공학회논문집
    • /
    • 제28권3호
    • /
    • pp.159-164
    • /
    • 2024
  • Recent earthquakes in Korea, like Gyeongju and Pohang, have highlighted the need for accurate seismic hazard assessment. The lack of substantial ground motion data necessitates stochastic simulation methods, traditionally used with a simplistic point-source assumption. However, as earthquake magnitude increases, the influence of finite faults grows, demanding the adoption of finite faults in simulations for accurate ground motion estimates. We analyzed variations in simulated ground motions with and without the finite fault method for earthquakes with magnitude (Mw) ranging from 5.0 to 7.0, comparing pseudo-spectral acceleration. We also studied how slip distribution and hypocenter location affect simulations for a virtual earthquake that mimics the Gyeongju earthquake with Mw 5.4. Our findings reveal that finite fault effects become significant at magnitudes above Mw 5.8, particularly at high frequencies. Notably, near the hypocenter, the virtual earthquake's ground motion significantly changes using a finite fault model, especially with heterogeneous slip distribution. Therefore, applying finite fault models is crucial for simulating ground motions of large earthquakes (Mw ≥ 5.8 magnitude). Moreover, for accurate simulations of actual earthquakes with complex rupture processes having strong localized slips, incorporating finite faults is essential even for more minor earthquakes.