• 제목/요약/키워드: navigation system

검색결과 6,333건 처리시간 0.037초

INS/GPS와 간접 되먹임 칼만 필터를 사용하는 이동 로봇의 복합 항법 시스템의 구현 (Implementation of a Hybrid Navigation System for a Mobile Robot by Using INS/GPS and Indirect Feedback Kalman Filter)

  • 김민지;주문갑
    • 대한임베디드공학회논문지
    • /
    • 제10권6호
    • /
    • pp.373-379
    • /
    • 2015
  • A hybrid navigation system is implemented to apply for a mobile robot. The hybrid navigation system consists of an inertial navigation system and a global positioning system. The inertial navigation system quickly calculates the position and the attitude of the robot by integrating directional accelerations, angular speed, and heading angle from a strap-down inertial measurement unit, but the results are available for a short time since it tends to diverge quickly. Global positioning system delivers position, heading angle, and traveling speed stably, but it has large deviation with slow update. Therefore, a hybrid navigation system uses the result from an inertial navigation system and corrects the result with the help of the global positioning system where an indirect feedback Kalman filter is used. We implement and confirm the performance of the hybrid navigation system through driving a car attaching it.

랜드마크 기반 비전항법의 오차특성을 고려한 INS/비전 통합 항법시스템 (INS/Vision Integrated Navigation System Considering Error Characteristics of Landmark-Based Vision Navigation)

  • 김영선;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.95-101
    • /
    • 2013
  • The paper investigates the geometric effect of landmarks to the navigation error in the landmark based 3D vision navigation and introduces the INS/Vision integrated navigation system considering its effect. The integrated system uses the vision navigation results taking into account the dilution of precision for landmark geometry. Also, the integrated system helps the vision navigation to consider it. An indirect filter with feedback structure is designed, in which the position and the attitude errors are measurements of the filter. Performance of the integrated system is evaluated through the computer simulations. Simulation results show that the proposed algorithm works well and that better performance can be expected when the error characteristics of vision navigation are considered.

REPRESENTATION OF NAVIGATION INFORMATION FOR VISUAL CAR NAVIGATION SYSTEM

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.508-511
    • /
    • 2007
  • Car navigation system is one of the most important applications in telematics. A newest trend of car navigation system is using real video captured by camera equipped on the vehicle, because video can overcome the semantic gap between map and real world. In this paper, we suggest a visual car navigation system that visually represents navigation information or route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid on it. Main services of the visual car navigation system are graphical turn guidance and lane change guidance. We suggest the system architecture that implements the services by integrating conventional route finding and guidance, computer vision functions, and augmented reality display functions. What we designed as a core part of the system is visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to a determination rule based on current location and driving circumstances. We briefly show the implementation of system.

  • PDF

GNSS/INS 통합항법 시스템을 위한 범용 PC와 Off-The-Shelf 인터페이스 보드를 이용한 시뮬레이터 설계 (Simulator Design Using a General Purpose PC and Off-The-Shelf Interface Boards for GNSS/INS Integrated Navigation System)

  • 손재훈;오상헌;황동환
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.93-102
    • /
    • 2024
  • Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation systems provide highly accurate and reliable navigation solutions and are widely used as civil and military navigation systems. In order to facilitate the GNSS/INS integrated navigation system development task, a simulator can be used to provide inputs for the GNSS/INS integrated navigation system. In this paper, a simulator design using general-purpose Personal Computer (PC) and Off-The-Shelf (OTS) interface boards for a GNSS/INS integrated navigation system is proposed and implementation results are presented. Requirements of the GNSS/INS integrated navigation system simulator are presented and a design method that satisfies the requirements is described. In order to show the usefulness of the proposed design method, a simulator using a general-purpose PC and OTS interface boards for the GPS/INS integrated navigation system are implemented and verified. The implementation results show that the simulator designed by the proposed method generates the GPS L1 C/A signal and IMU data without any problems.

구면항법과 쌍곡면항법의 알고리즘을 조합한 고정도 위치결정법에 관한 연구 (A Study on High Accuracy Position Fixing Method by Combining the Algorithm of Hyperbolic and Spherical Navigation System)

  • 김우숙;김동일;정세모
    • 한국항해학회지
    • /
    • 제12권1호
    • /
    • pp.45-53
    • /
    • 1988
  • In this paper, the equations calculating GDOP are induced in Hyperboic, and Spherical Navigation System, respectively, The GDOP diagram shows that the DGOP in the inner region of Beacons is similar each other, but the GDOP of Hyperboic Navigation System is much larger than that of Spherical Navigation System due to GDOP in the outer region of Beacons. The authors propose the algorithm estimating the pulse starting time using the Hyperboic Navigation System, and prove that if Navigation use the Spherical Navigation System by adopting the proposed Algorithm -in this case, "Pseudo Sperical Navigation System" - in the outer region where GDOP is becoming large, the position errors can be reduced.e reduced.

  • PDF

A Design of Navigation System Using Stratospheric Airships in South Korea

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Hur, Jung;Kang, Tae-Sam
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.56-69
    • /
    • 2006
  • For a relatively small country like Korea, a radionavigation system using airships can be considered, which is to provide the navigation service utilizing the stratospheric airships that are deployed in the stratosphere at the altitude of around 20-23km, and which is an independent or a back-up radionavigation system other than current GPS or GLONASS. In this paper, a feasibility study on the constellation of stratospheric airships for the navigation system has been performed. A measure of a geometrical condition between a receiver and navigation transmitters. called the DOP (Dilution of Precision), determines the resulting positioning error of the navigation system, if the error of range measurement is predictable. Therefore, with assumption that the range measurement error of the stratospheric airship navigation system is quite similar to GPS. the several DOP values have been used to evaluate the performance of the navigation system with comparing with the DOP values of GPS as the reference values. To provide the position information of the navigation transmitters to users, a receiver cluster system fixed on the ground, called an IGPS (inverted GPS), is proposed, and the error is also evaluated using the DOP values. Five areas around five major cities in South Korea have been selected, and then by numerical simulations the DOP values are compared those of GPS to assess the performance of the proposed navigation system using stratospheric airships. The possible frequency bands have been proposed. and then link budget of the navigation transmitter has been analyzed for the proposed navigation system.

SBAS 성능기반 항행을 위한 항공용 GNSS 기술표준 분석 연구 (Study on Technical Standard of Aviation GNSS for SBAS Performance Based Navigation)

  • 박재익;이은성;허문범;남기욱
    • 한국항행학회논문지
    • /
    • 제20권4호
    • /
    • pp.305-313
    • /
    • 2016
  • ICAO (International Civil Aviation Organization)는 GNSS (global navigation satellite system)를 이용하는 PBN (performance based navigation) 도입을 권고하였다. 우리나라도 PBN 로드맵을 수립하여 항공분야에서 GNSS를 이용할 수 있는 환경을 갖추려 시도하고 있으며, 2014년 10월 한국형 SBAS (satellite-based augmentation system) 개발을 위해 KASS (Korea augmentation satellite system) 사업을 본격적으로 착수하였다. 항공기가 GNSS를 이용하기 위해서는 수신기와 같은 항법장비를 탑재해야 한다. GNSS 항법장비는 항로, 이륙 도착, 접근 등 비행 단계에서 사용되기 때문에 장비의 규격은 다양하고 각각 별도로 그 기능과 성능을 규정하고 있다. 이 논문에서는 현재까지 제정된 항공용 GNSS 장비 표준안과 규정된 항법장비 및 인터페이스 규격에 대해 분석하여 정리하였다. KASS 개발 구축 시 비행시험 및 비행절차 개발 등 항공용 GNSS 탑재장비 등이 요구되는 곳에 활용성이 있을 것으로 기대한다.

무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템 (Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle))

  • 오상헌;이상정;박찬식;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

직진성이 보장되지 않는 조건에서 지상항법시스템의 속도계를 이용한 보정항법 알고리즘 (Aided Navigation Algorithm for Land Navigation System Using VMS with Indirect Drive Condition)

  • 김형수
    • 한국항행학회논문지
    • /
    • 제20권4호
    • /
    • pp.314-320
    • /
    • 2016
  • 관성항법시스템 (INS; inertial navigation system)은 센서 오차에 의해 유발되는 항법오차 보정을 위해 보정시스템이나 보정센서를 사용한다. 위성항법시스템 (GNSS; global navigation satellite system), 속도계 (VMS; velocity measurement sensor), 레이더는 INS를 보정하기 위해 일반적으로 사용되는 장치이다. 터널을 지나거나 전파 방해를 받아 GNSS를 사용할 수 없는 환경에서 지상항법시스템 (LNS; land navigation system)이 주로 사용하는 보정센서는 속도계이다. 속도계는 진행방향의 속도성분만 존재하고 횡축 및 종축 속도성분이 없기 때문에 속도계 보정항법을 수행 할 때 직진 주행이 요구된다. 국내는 고속도로라도 원활히 속도계 보정항법을 할 수 있는 구간이 드문데, 이는 국토 형상 및 도로 건설 조건이 속도계 보정에 필요한 직진성 유지에 적합하지 않기 때문이다. 본 논문은 직진성이 보장되지 않는 환경에서 LNS의 속도계를 사용한 보정항법을 수행할 때, 측정치의 필터 갱신 조건을 두어 성능을 개선하는 알고리즘을 제안하였다. 또한 차량탑재 시험결과를 제시하여 알고리즘의 성능을 입증하였다.

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권2호
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.