• 제목/요약/키워드: navigation simulation

검색결과 1,826건 처리시간 0.035초

개선된 거리변환 알고리즘을 이용한 이동 로봇의 경로 계획 및 추적 (Path Planning and Tracking for Mobile Robots Using An Improved Distance Transform Algorithm)

  • 박진현;박기형;최영규
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.295-299
    • /
    • 2005
  • 본 연구는 개선된 거리변환 알고리즘을 사용하여 로봇이 이동해야 할 경로를 생성하고, 퍼지 시스템을 사용하여 경로추적 행위기와 장애물 회피 행위기를 구현해서 로봇이 그 경로를 안전하고 효율적으로 추적하는 것을 목적으로 하였다. 개선된 거리변환 알고리즘을 이용하여 로봇의 유연한 주행을 가능하게 했으며, 또한 주행거리와 주행시간도 단축되는 것을 확인할 수 있었다. 경로생성 후 경로를 추적할 때는 퍼지 시스템을 이용한 경로추적 행위기와 장애물 회피 행위기를 선택적으로 사용해서 경로추적 중에 예상치 못한 장애물이 발견되었을 경우에도 장애물을 회피한 후에 계속해서 경로를 추적하는 것을 확인함으로써 경로생성 후의 외부환경변화에도 강인함을 볼 수 있었다.

  • PDF

신경회로망 예측제어를 이용한 ATC 제어기 설계에 관한 연구 (A Study on Design of Controller for ATC using Neural Network Predictive Control)

  • 손동섭;이진우;이영진;이장명;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2456-2458
    • /
    • 2003
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from the initial coordinate to the finial coordinate, the container paths should be built in terms of the least time and without sway. Therefore, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate in this paper. And we constructed the neural network predictive two degree of freedom PID (NNPPID) controller to control the precise navigation. The proposed Predictive control system is composed of the neural network predictor, two degree of freedom PID(TDOFPID) controller, neural network self-tuner which yields parameters of TDOFPID. We analyzed crane system through simulation, and proved excellency of control performance over the conventional controllers.

  • PDF

쌍곡선형 파랑모형을 이용한 해빈류 예측 (Prediction of Wave-Induced Current Using Time-Dependent Wave Model)

  • 김재중;이정만
    • 한국항만학회지
    • /
    • 제12권2호
    • /
    • pp.269-280
    • /
    • 1998
  • A Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mixing radiation stresses surface and bottom stresses are considered in our current model. Copeland’s(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda’s(1974) experimental results for the uniform slope coastal region test and Nishimura & Naruyama’s (1985) experimental results and numerical simulation results for the detached breakwater. The results from our wave model and wave model and wave-induced current model show good agreements with the others and also show nonlinear effects around the detached breakwater. The model in this study can be applied in the surf zone considering the friction stresses.

  • PDF

항공기의 횡방향 접근 제어를 위한 축소차수 상태관측기 설계 (Reduced Order Luenberger State Observer Design for Lateral Direction Approach Control of Aircraft)

  • 이병석;허문범;남기욱;박형택
    • 한국항공운항학회지
    • /
    • 제20권2호
    • /
    • pp.18-25
    • /
    • 2012
  • The availability of the GPS signal has been expanded greatly in the field of society overall through the development and construction of the GNSS(Global Navigation Satellite System). Furthermore, in the military, aviation and field of space, the GPS signal is applied widely through the combination of INS consisting of gyroscope and accelerometer, IMU, AHRS with the addition of magnetic sensor. Particularly, the performance of these equipments or sensors is very important with GPS and PAR(Precision Approach Radar) in the flight control of the aircraft. This paper deals with MATLAB simulation and ROLSO(Reduced Order Luenberger State Observer) design to reduce the load of system and realize the stable lateral direction approach control in an appropriate time for reduction of the horizontal error which is importantly considered while an aircraft lands instead of the FOLSO(Full Order Luenberger State Observer) using all measurement values. Consequently, ROLSO is expected to be used for the aircraft's attitude control in the aircraft landing causing the burden to the pilots.

Carrier Phase-Based Gps/Pseudolite/Ins Integration: Solutions Of Ambiguity Resolution And Cycle Slip Detection/Identification

  • Park, Woon-Young;Lee, Hung-Kyu;Park, Suk-Kun;Lee, Hyun-Jik
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 Korea-Russia Joint Conference on Geometics
    • /
    • pp.82-94
    • /
    • 2004
  • This paper addresses solutions to the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The occurrence of a cycle slip that is undetected is, however, can significantly degrade the filter's performance. This contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as the cumulative-sum (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF

다양한 인공 신경망을 적용한 광대역 스펙트럼의 피로손상 예측 (Fatigue Damage Estimation of Wide Band Spectrum Considering Various Artificial Neural Networks)

  • 박준범;김성용
    • 한국해양공학회지
    • /
    • 제30권5호
    • /
    • pp.341-348
    • /
    • 2016
  • The fatigue damage caused by wide band loadings has generally been predicted using fatigue damage models in the frequency domain rather than a rain-flow counting method in the time domain because of its computation cost. This study showed that these fatigue damage models can be simplified in the form of normalized fatigue damage as a function of the S-N curve slope and bandwidth parameters. Based on numerical simulations of various wide band spectra, it was found that fatigue damage models in the form of normalized fatigue damage with one S-N curve slope and two bandwidth parameters( α1 , α2 ) provided less reasonable fatigue damage. Therefore, an additional bandwidth parameter needs to be considered based on a sensitivity study using various neural networks, which proved that α1-5 would be the dominant factor of a fatigue damage model as an additional bandwidth parameter.

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

A New Sound Reception System using a Symmetrical Microphone Array and its Numerical Simulation

  • Choi Jae-Woong;Kim Ki-Jung
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.18-25
    • /
    • 2004
  • Sound reception system is required to detect the sound and the quadrantal direction of the other ship's horn sound, to overcome the effects of enclosed wall for navigation space, functioning as a sound barrier. However, the realized systems can only provide quadrantal information of the other ship. This paper presents a new arrangement of microphones, having geometrically symmetric deployment with the same distances between sensors and the same angles between adjacent sensors with respect to the geometrical center. The sound pressures received at microphones are transformed into the related envelope signals by applying Hilbert transform. The time delays between microphones are estimated by the correlation functions between the derived envelope signals. This envelope base processing mitigates the noises related to the reflection by ship and sea surface. Then, the directional information is easily defined by using the estimated time delays. The suggested method is verified by the generated signals using boundary element method for a small ship model with sea surface wave. The estimated direction is quite similar to the true one and therefore the proposed approach can be used as an efficient sound reception system.

BOG 내부 열교환을 이용한 LNG 선박용 Boil-Off Gas 재액화 시스템 (Boil-Off Gas Reliquefaction System for LNG Carriers with BOG-BOG Heat Exchange)

  • 이윤표;신유환;이상훈;김광호
    • 대한조선학회논문집
    • /
    • 제46권4호
    • /
    • pp.444-451
    • /
    • 2009
  • The price increase of natural resources and the worldwide growth of LNG demand led to save the waste of Boil-Off Gas evaporating from cargo tanks of LNG carriers during navigation. As one of the efforts, a BOG reliquefaction system with BOG-to-BOG heat exchanging method was newly devised. This study was also discussed on the process details such as some features and advantages including comparisons with conventional BOG reliquefaction system, non BOG-BOG heat exchange type. The thermodynamic analysis for the system were also performed. Through the cycle simulation, the process efficiency of the BOG reliquefaction system BOG-BOG heat exchange was estimated to be increased up to 21%.

Vibration control for serviceability enhancement of offshore platforms against environmental loadings

  • Lin, Chih-Shiuan;Liu, Feifei;Zhang, Jigang;Wang, Jer-Fu;Lin, Chi-Chang
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.403-414
    • /
    • 2019
  • Offshore drilling has become a key process for obtaining oil. Offshore platforms have many applications, including oil exploration and production, navigation, ship loading and unloading, and bridge and causeway support. However, vibration problems caused by severe environmental loads, such as ice, wave, wind, and seismic loads, threaten the functionality of platform facilities and the comfort of workers. These concerns may result in piping failures, unsatisfactory equipment reliability, and safety concerns. Therefore, the vibration control of offshore platforms is essential for assuring structural safety, equipment functionality, and human comfort. In this study, an optimal multiple tuned mass damper (MTMD) system was proposed to mitigate the excessive vibration of a three-dimensional offshore platform under ice and earthquake loadings. The MTMD system was designed to control the first few dominant coupled modes. The optimal placement and system parameters of the MTMD are determined based on controlled modal properties. Numerical simulation results show that the proposed MTMD system can effectively reduce the displacement and acceleration responses of the offshore platform, thus improving safety and serviceability. Moreover, this study proposes an optimal design procedure for the MTMD system to determine the optimal location, moving direction, and system parameters of each unit of the tuned mass damper.