• Title/Summary/Keyword: navigation pattern

Search Result 317, Processing Time 0.025 seconds

Generating Mashup Client View Navigation Codes using REST Style Service Patterns (REST 서비스 패턴을 이용한 매시업 클라이언트 뷰 이동 코드 생성)

  • Lee, Eun-Jung
    • The KIPS Transactions:PartD
    • /
    • v.17D no.5
    • /
    • pp.359-370
    • /
    • 2010
  • As web 2.0 becomes one of the important architecture styles, more web applications adopt single page structure instead of multiple web pages and navigations between pages. A single page web application client, called a mashup client in this paper, interfaces more than one services and allows users to navigate in the page. A mashup client page includes complicated functions and has to handle various styles of services and user requirements, and therefore is usually developed manually. In this paper, we propose a model driven code generation approach for in-page navigations. We propose a page model and view navigation design approach, applying REST service architecture patterns. Then, we consider type conditions for each view to have service calls or navigation controls. Also, we developed an XForms page code generation system to demonstrate the efficiency of the proposed method. The developed system generates mashup client pages including navigation controls between services and views. This system can generate ready to use codes from service specifications, so this can help to reduce the development overhead. Moreover, our approach is based on formal model and navigation patterns so the generated result code is simple and easy to understand, and includes only the necessary controls. Therefore, the proposed approach can be more effective for the case of a large number of services.

Development of an Algorithm for Predictable Navigation and Collision Avoidance Using Pattern Recognition of an Obstacle in Autonomous Mobile Robot (장애물 패턴을 이용한 자율이동로봇의 예측주행 및 충돌회피 알고리즘 개발)

  • Lee, Min-Chul;Kim, Bum-Jae;Lee, Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.113-123
    • /
    • 2000
  • In the navigation for a mobile robot, the collision avoidance with unexpected obstacles is essential for the safe navigation and it is independent of the technique used to control the mobile robot. This paper presents a new collision avoidance algorithm using neural network for the safe navigation of the autonomous mobile robot equipped with CAN and ultrasonic sensors. A tracked wheeled mobile robot has a stability and an efficiency to move on a rough ground. And its mechanism is simple. However it has difficulties to recognize its surroundings. Because the shape of the tracked wheeled mobile robot is a square type, sensor modules are generally located on the each plane surface of 4 sides only. In this paper, the algorithm using neural network is proposed in order to avoid unexpected obstacles. The important character of the proposed algorithm is to be able to detect the distance and the angle of inclination of obstacles. Only using datum of the distance and the angle, informations about the location and shape of obstacles are obtained, and then the driving direction is changed. Consequently, this algorithm is capable of real time processing and available for a mobile robot which has few sensor modules or the limited sensing range such as a tracked wheeled mobile robot. Effectiveness of the proposed algorithm is illustrated through a computer simulation and an experiment using a real robot.

  • PDF

Procedure of Barometer Setting in Flight with On-board Navigation Data alone (자체 항법 정보만을 이용한 비행 중 기압 고도계 설정 방법)

  • Jung, Suk-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.300-308
    • /
    • 2012
  • In GPS/INS/barometer navigation system for UAV, two procedures were proposed in order to set three reference parameters for the pressure altitude of QNH or QFE settings, using the navigation data from on-board system alone. These procedures yield required the reference parameters through mathematical process with the altitude and the atmosphere properties measured for a short duration of flight, of which a special pattern is requested according to the selected procedure. Dependency only upon the on-board navigation data can eliminate a requirement for the atmospheric measurement system in the ground support system and can expand a flight boundary to a remote area where the ground support is not available. Especially the procedure with the regression method uses altitude and pressure but temperature to produce the three reference parameters. No need of temperature measurement for the pressure altitude system can simplify the on-board air data system.

Day-to-Day Repeatability of the Navigation Solution and SNR from the GPS Receiver installed on KSLV-I (나로호에 탑재된 GPS 수신기의 항법해와 신호대잡음비의 일반복 특성)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.774-787
    • /
    • 2011
  • This paper deals with quantitative analysis about the characteristics of GNSS(Global Navigation Satellite System) signals contaminated with multipath signals and day-to-day repeatability of the navigation solution and SNR(Signal to Noise Ratio) caused by multipath signals using the collected data from GPS receiver installed on KSLV-I which was on standby on the launch pad at Naro Space Center. Since the GPS antennas, surrounding environments and GPS satellite orbits were very slightly changed with respect to the day, the repeating pattern of the solution and SNR caused by the multipath signals was verified from the collected data. Analytic result of the multipath effects and day-to-day repeatability of the navigation solution and SNR observed at the launch pad would be used for obtaining more stable performance of the GPS receiver when the satellite launch vehicles are on standby.

On the Diurnal, Annual, and Solar Cycle Variations of Slant Total Electron Content in the Korean Peninsula

  • Yoon, Woong-Jun;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.87-96
    • /
    • 2016
  • The ionospheric error, which is one of many error elements considered during the Global Navigation Satellite System (GNSS) positioning, is hard to be predicted due to the influence of geomagnetic activity and irregular solar activities. Thus, the present study analyzed a change pattern in the ionosphere through Global Ionosphere Map (GIM) data for 12 years from 2003 to 2014 and a variation in the Slant Total Electron Content (STEC) between Sinuiju and Busan which was the longest range in the southeastern direction of the Korean Peninsula. The variation in the STEC verified the diurnal, annual, and solar cycle variations due to the influence of solar activity. The diurnal variation was characterized that the variation in the STEC started to increase from 6-7 am and reached the maximum at 13-14 pm followed by being decreased. The seasonal variation was characterized that the variation in the STEC was high in spring and autumn whereas it was low in summer and winter. The solar cycle variation revealed that the variation in the STEC increased during solar maximum and decreased during solar minimum. The variation in the STEC was up to 20 Total Electron Content Unit (TECU) during the solar minimum and up to 60 TECU during solar maximum.

A Study of the Flow Pattern and the PIV Analysis around a Flap Foil (플랩을 갖는 익 주변의 유동 특성과 PIV 해석에 관한 연구)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Oh, Kyoung-Gun;Jo, Dae-Hwan;Lee, Seung-Keon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Maneuverability of ships has been receiving a great deal of attention both concerning navigation safety and the prediction of ship maneuvering characteristics, to improve it. high-lift device could be applied to design of rudder at design stage. Now, we carried out the flow visualization and investigation of flow field around a flap rudder(trailing-edge flap). Flow visualization results of flap defection shown as the flow around a NACA0020 Flap Rudder will be conducted in a Circulating Water Channel. The purpose of this investigation will be to investigate the development of the separation region on the flap rudder with the variation of the angle of attack and determine the angle of attack at which the flow separates and reattaches.

  • PDF

3D Global Dynamic Window Approach for Navigation of Autonomous Underwater Vehicles

  • Tusseyeva, Inara;Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • An autonomous unmanned underwater vehicle is a type of marine self-propelled robot that executes some specific mission and returns to base on completion of the task. In order to successfully execute the requested operations, the vehicle must be guided by an effective navigation algorithm that enables it to avoid obstacles and follow the best path. Architectures and principles for intelligent dynamic systems are being developed, not only in the underwater arena but also in related areas where the work does not fully justify the name. The problem of increasing the capacity of systems management is highly relevant based on the development of new methods for dynamic analysis, pattern recognition, artificial intelligence, and adaptation. Among the large variety of navigation methods that presently exist, the dynamic window approach is worth noting. It was originally presented by Fox et al. and has been implemented in indoor office robots. In this paper, the dynamic window approach is applied to the marine world by developing and extending it to manipulate vehicles in 3D marine environments. This algorithm is provided to enable efficient avoidance of obstacles and attainment of targets. Experiments conducted using the algorithm in MATLAB indicate that it is an effective obstacle avoidance approach for marine vehicles.

Single-Feed, Wideband, Circularly Polarized, Crossed Bowtie Dipole Antenna for Global Navigation Satellite Systems

  • Tran, Huy Hung;Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.299-305
    • /
    • 2014
  • A wideband circularly polarized (CP) antenna with a single feed is proposed for use in global navigation satellite systems. Its primary radiation elements are composed of two orthogonal bowtie dipoles, which are equipped with double-printed vacant-quarter rings to allow direct matching of the antenna to a single $50-{\Omega}$ coaxial line and to produce CP radiation. The crossed bowtie dipole is appropriately incorporated with a planar metallic reflector to produce the desired unidirectional radiation pattern as well as to achieve a wideband characteristic in terms of impedance matching and axial ratio (AR) bandwidths. The designed antenna was fabricated and measured. The prototype antenna with an overall 1.2-GHz frequency size of $0.48{\lambda}_o{\times}0.48{\lambda}_o{\times}0.25{\lambda}_o$ produced a measured ${\mid}S_{11}{\mid}$<-10 dB bandwidth of 1.05-1.79 GHz and a measured 3-dB AR bandwidth of 1.12-1.64 GHz. It also showed right-hand CP radiation with a small gain variation (${\pm}0.3dB$) and high radiation efficiency (>93%) over the operational bandwidth.

A Combination Method of Trajectory Data using Correlated Direction of Collected GPS Data (수집한 GPS데이터의 상호방향성을 이용한 경로데이터 조합방법)

  • Koo, Kwang Min;Park, Heemin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1636-1645
    • /
    • 2016
  • In navigation systems that use collected trajectory for routing, the number and diversity of trajectory data are crucial despite the infeasible limitation which is that all routes should be collected in person. This paper suggests an algorithm combining trajectories only by collected GPS data and generating new routes for solving this problem. Using distance between two trajectories, the algorithm estimates road intersection, in which it also predicts the correlated direction of them with geographical coordinates and makes a decision to combine them by the correlated direction. With combined and generated trajectory data, this combination way allows trajectory-based navigation to guide more and better routes. In our study, this solution has been introduced. However, the ways in which correlated direction is decided and post-process works have been revised to use the sequential pattern of triangles' area GPS information between two trajectories makes in road intersection and intersection among sets comprised of GPS points. This, as a result, reduces unnecessary combinations resulting redundant outputs and enhances the accuracy of estimating correlated direction than before.

Design and Implementation of Driving Pattern based Map Matching on Smart Phone (스마트폰에서 운전자 이동패턴을 이용한 맵매칭 설계 및 구현)

  • Hwang, Jae-Yun;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.23 no.4
    • /
    • pp.47-56
    • /
    • 2015
  • Recently, there has been an increase in the number of people who use the smart-phone navigation for using various latest functions such as group driving and location sharing. But smart-phone has a limited storage space for one application, since a lot of applications with different purposes are installed in the smart-phone. For this reason, road network data with a large space of memory used for map matching in the device for navigation cannot be stored in the smart-phone for this reason map matching is impossible. Besides, smart-phone which doesn't use the external GPS device, provides inaccurate GPS information, compared to the device for navigation. This is why the smart-phone navigation is hard to provide accurate location determination. Therefore, this study aims to help map matching that is more accurate than the existing device for navigation, by reducing the capacity of road network data used in the device for navigation through format design of a new road network and conversion and using a database of driver's driving patterns. In conclusion, more accurate map matching was possible in the smart-phone by using a storage space more than 80% less than existing device at the intersection where many roads cross, the building forest that a lot of GPS errors occur, the narrow roads close to the highway. It is considered that more accurate location-based service would be available not only in the navigation but also in various applications using GPS information and map in the future Navigation.