• Title/Summary/Keyword: navier method

Search Result 1,242, Processing Time 0.023 seconds

Three-Dimensional Navier-Stokes Analysis of the Flow through A Multiblade Centrifugal Fan (원심다익송풍기 유동의 삼차원 Navier-Stakes 해석)

  • Seo, Seoung-Jin;Chen, Xi;Kim, Kwang-Yong;Kang, Shin-Hyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.42-48
    • /
    • 1998
  • Numerical study is presented for the analysis of three-dimensional incompressible turbulent flows in multiblade centrifugal fan. Reynolds-averaged Navier-Stokes equations with standard k - $\epsilon$ turbulence model are transformed to non-orthogonal curvilinear coordinates, and are discretized with finite volume approximations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational area is divided into three blocks; core, impeller and scroll, which are linked by multi-block method. The flow inside of the fan is regarded as steady flow, and mathematical formula established from the cascade theory and empirical coefficient are employed to simulate tile flow through the impeller. From comparisons between the computational results and the experimental data, the validity of the mathematical formula for the blade forces was examined and good results were obtained qualitatively. Hence, we can get the flow characteristics of multi-blade centrifugal fan and it will be a corner stone of the development of the multiblade centrifugal fan.

  • PDF

Application of Navier-Stokes Equations to the Aerodynamic Design of Axial-Flow Turbine Blades (축류터빈 블레이드의 공력학적 설계를 위한 Navier-Stokes방정식의 적용)

  • Chung H.T;Chung K.S;Park J.Y;Baek J.H;Chang B.I;Cho S.Y
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2003
  • The design method for transonic turbine blades has been developed based on Wavier-Stokes equations. The present computing process is done on the four separate steps, i.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. In the present study, numerical simulation has been done to investigate the effects of the design parameters on the aerodynamic peformance of the axial-flow turbine blades. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to four parameters and compared with the experimental data.

Visualization of $1^{st}$ order phase transition by using lattice Boltzmann equation (Lattice Boltmann 방정식에 의한 1차 상변이의 가시화)

  • Ha, Man-Yeong;Kim, Hyo-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.103-106
    • /
    • 2005
  • Lattice Boltzmann method is a new numerical method of investigating the fluid flow which have been solved by Navier-Stokes equation recently. It is known that making the single and parallel algorithms of the Lattice Boltzmann equation is easier than those of Navier-Stokes equations. Also, we can simulate the two phase flow using either the 'Interaction Potential model ' introduced by Shan and Chen. In this paper, we first compared the 3D cavity results of Lattice Boltzmann method with other numerical results for validation and showed the 3D phase transition and its simple application by using the ' Interaction Potential model'

  • PDF

Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method (Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석)

  • Choi Hwan-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

Convergence Study of Multigrid Method for K-$\omega$ Turbulence Equations (K-$\omega$ 난류방정식을 위한 다중격자기법의 수렴성 연구)

  • Park Soo Hvung;Sung Chun-ho;Kwon Jang Hyuk;Lee Seungsoo
    • Journal of computational fluids engineering
    • /
    • v.7 no.4
    • /
    • pp.19-27
    • /
    • 2002
  • An efficient implicit multigrid method is presented for the Navier-Stokes and k-ω turbulence equations. Freezing and limiting strategies are applied to improve the robustness and convergence of the multigrid method. The eddy viscosity and strongly nonlinear production terms of turbulence are frozen in the coarser grids by passing down the values without update of them. The turbulence equations together with the Navier-Stokes equations, however, are consecutively solved on the coarser grids in a loosely coupled fashion. A simple limit for k is also introduced to circumvent slow-down of convergence. Numerical results for the unseparated and separated transonic airfoil flows show that all computations converge well without any robustness problem and the computing time is reduced to a factor of about 3 by the present multigrid method.

Convergence Study of $k-{\omega}$ Turbulence Equations for Compressible Flows (압축성 유동을 위한 $k-{\omega}$ 난류방정식의 수렴성 연구)

  • Park Soo Hyung;Sung Chun-ho;Kwon Jang Hyuk;Lee Seungsoo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.31-34
    • /
    • 2002
  • An efficient implicit multigrid method is presented for the Navier-Stokes and $k-{\omega}$ turbulence equations. Freezing and limiting strategies are applied to improve the robustness and convergence of the multigrid method. The eddy viscosity and strongly nonlinear production terms of turbulence are frozen in the coarser grids by passing down the values without update of them. The turbulence equations together with the Navier-Stokes equations, however, are consecutively solved on the coarser grids in a loosely coupled fashion. A simple limit for k is also introduced to circumvent slow-down of convergence. Numerical results for the unseparated and separated transonic airfoil flows show that all computations converge well without any robustness problem and the computing time is reduced to a factor of about 3 by the present multigrid method.

  • PDF

A numerical study on ship-ship interaction in shallow and restricted waterway

  • Lee, Sungwook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.920-938
    • /
    • 2015
  • In the present study, a numerical prediction method on the hydrodynamic interaction force and moment between two ships in shallow and restricted waterway is presented. Especially, the present study proposes a methodology to overcome the limitation of the two dimensional perturbation method which is related to the moored-passing ship interaction. The validation study was performed and compared with the experiment, firstly. Afterward, in order to propose a methodology in terms with the moored-passing ship interaction, further studies were performed for the moored-passing ship case with a Reynolds Averaged Navier-Stokes (RANS) calculation which is using OpenFOAM with Arbitrary Coupled Mesh Interface (ACMI) technique and compared with the experiment result. Finally, the present study proposes a guide to apply the two dimensional perturbation method to the moored-passing ship interaction. In addition, it presents a possibility that the RANS calculation with ACMI can applied to the ship-ship interaction without using a overset moving grid technique.

A Finite Volume Method for Computations of Two-Dimensional Laminar Flows (이차원 층류유동 해석을 위한 유한체적법)

  • Kim, Ki-Sup;Chung, Myung-Kyoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.59-70
    • /
    • 1992
  • A Finite volume method for the computation of the two-dimensional, incompressible, steady, laminar Navier-Stokes equation is developed using a non-staggered grid system in a general curvilinear coordinate. The numerical pressure fluctuations, usually encountered when the non-staggered grid system is used, is suppressed by the momentum interpolation method. Flows around a NACA0012 foil section have been computed by the present method and the results show good agreements with other experimental and numerical ones.

  • PDF

CFD Optimization of Supersonic Minimum Drag Forebody (CFD 방법에 의한 초음속 비행체 Nose 의 최소항력 형상 설계)

  • Oh Seung Min;Yoon Sung Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.154-159
    • /
    • 1995
  • Numerical optimization technique with Navier-Stokes code has been used to reduce the drag of conventional ogival nose. Forebody optimizations are performed for supersonic laminar and turbulent flow conditions. To alleviate the computing time of aerodynamic drag calculation, axisymmetric boundary condition is implemented in the 3-dimensional Navier-Stokes code. The automated optimization procedure with gradient based method results in a drag reduction of $4\;\%$.

  • PDF

Level Set Advection of Free Fluid Surface Modified by Surface Tension

  • Pineda, Israel;Gwun, Oubong
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • Fluids appear in innumerable phenomena; therefore, it is interesting to reproduce those phenomena by computer graphics techniques. However, this process is not trivial. We work with a fluid simulation that uses Navier-Stokes equations to model the fluid, a semi-Lagrangian approach to solve it and the level set method to track the surface of the fluid. Modified versions of the Navier-Stokes equations for computer graphics allow us to create a wide diversity of effects. In this paper, we propose a technique that allows us to integrate a force inspired by surface tension into the model. We describe which information we need and how to modify the model with this new approach. We end up with a modified simulation that has additional effects that might be suitable for computer graphics purposes. The effects that we are able to recreate are small waves and droplet-like formations close to the surface of the fluid. This model preserves the overall behavior governed by the Navier-Stokes equations.