• Title/Summary/Keyword: navier method

검색결과 1,246건 처리시간 0.025초

Thermomechanical bending investigation of FGM sandwich plates using four shear deformation plate theory

  • Bouamoud, Ahmed;Boucham, Belhadj;Bourada, Fouad;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.611-632
    • /
    • 2019
  • In this work, a four-variable refined plate model is applied to study the thermomechanical bending of two kinds of functionally graded material (FGM) sandwich plates. The sandwich core of one kind is isotropic with the FGM face sheets whereas in the second kind, the sandwich core is FGM with the isotropic and homogeneous face sheets. By considering only four unknown variables, the governing equations are written based on the principle of virtual work and then Navier method is employed to solve these equations. Deflections and stresses of two kinds of FGM sandwich structures are analyzed and discussed. The validity and efficiency of the proposed model is checked by comparing it with various available solutions in the literature. The effects of volume fraction distribution, geometric ratio and thermal load on thermomechanical bending properties of FGM sandwich plate are investigated in detail.

Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory

  • Zarga, Djaloul;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.389-410
    • /
    • 2019
  • In this article, a simple quasi-3D shear deformation theory is employed for thermo-mechanical bending analysis of functionally graded material (FGM) sandwich plates. The displacement field is defined using only 5 variables as the first order shear deformation theory (FSDT). Unlike the other high order shear deformation theories (HSDTs), the present formulation considers a new kinematic which includes undetermined integral variables. The governing equations are determined based on the principle of virtual work and then they are solved via Navier method. Analytical solutions are proposed to provide the deflections and stresses of simply supported FGM sandwich structures. Comparative examples are presented to demonstrate the accuracy of the present theory. The effects of gradient index, geometrical parameters and thermal load on thermo-mechanical bending response of the FG sandwich plates are examined.

고속전철 객실의 공기 분배 및 기류에 관한 수치해석적 연구 (A Numerical Study on Air Distribution and Flow in the Passenger Cabin of a High-Speed Electric Train)

  • 명현국;유경훈;황정호
    • 한국입자에어로졸학회지
    • /
    • 제15권1호
    • /
    • pp.27-36
    • /
    • 2019
  • Numerical analysis has been conducted on three-dimensional airflow distribution in the passenger cabin of a high-speed electric train. The types of air distribution systems investigated in the present study were those of TGV and Shinkansen. The Reynolds-averaged Navier-Stokes equations governing the mass and momentum conservations of the airflow in the cabin were solved by using a finite volume method, which are coupled with the standard $k-{\varepsilon}$ turbulence model equations. Predicted velocity distributions were presented on several selected planes in the passenger cabin. The present three-dimensional simulations were found to show the overall features of the airflow in the passenger cabin fairly well. In particular, it was shown that the type of air distribution for Shinkansen was more suitable for a non-smoking cabin than that for TGV.

Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates

  • Bendaho, Boudjema;Belabed, Zakaria;Bourada, Mohamed;Benatta, Mohamed Atif;Bourada, Fouad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제7권4호
    • /
    • pp.277-292
    • /
    • 2019
  • In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.

Buckling behavior of rectangular plates under uniaxial and biaxial compression

  • Bourada, Mohamed;Bouadi, Abed;Bousahla, Abdelmoumen Anis;Senouci, Amel;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.113-123
    • /
    • 2019
  • In the classical stability investigation of rectangular plates the classical thin plate theory (CPT) is often employed, so omitting the transverse shear deformation effect. It seems quite clear that this procedure is not totally appropriate for the investigation of moderately thick plates, so that in the following the first shear deformation theory proposed by Meksi et al. (2015), that permits to consider the transverse shear deformation influences, is used for the stability investigation of simply supported isotropic rectangular plates subjected to uni-axial and bi-axial compression loading. The obtained results are compared with those of CPT and, for rectangular plates under uniaxial compression, a novel direct formula, similar to the conventional Bryan's expression, is found for the Euler stability stress. The accuracy of the present model is also ascertained by comparing it, with model proposed by Piscopo (2010).

Numerical investigation on combined wave damping effect of pneumatic breakwater and submerged breakwater

  • Wang, Yanxu;Yin, Zegao;Liu, Yong;Yu, Ning;Zou, Wei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.314-328
    • /
    • 2019
  • This paper attempts to combine the pneumatic breakwater and submerged breakwater to increase the effectiveness of wave damping for long-period waves. A series of physical experiments concerning pneumatic breakwater, submerged breakwater and their joint breakwater was conducted and used to validate a mathematical model based on Reynolds-averaged Navier-Stokes equations, the RNG $k-{\varepsilon}$ turbulence model and the VOF method. In addition, the mathematical model was used to investigate the wave transmission coefficients of three breakwaters. The nonlinear wave propagation behaviors and the energy transfer from lower frequencies to higher frequencies after the submerged breakwater were investigated in detail. Furthermore, an optimal arrangement between pneumatic breakwater and submerged breakwater was obtained for damping longer-period waves that cannot be damped effectively by the pneumatic breakwater alone. In addition, the reason for the appearance of the combination effect is that part of the energy of the transmitted waves over the submerged breakwater transfers to shorter-period waves. Finally, the impact of the joint breakwater on the wave field during wave propagation process was investigated.

An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models

  • Hadji, Lazreg;Zouatnia, Nafissa;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.231-241
    • /
    • 2019
  • In this paper, a new higher order shear deformation model is developed for static and free vibration analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present higher-order shear deformation model, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain displacement, stresses and frequencies, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams.

Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation

  • Mohammadimehr, Mehdi;Arshid, Ehsan;Alhosseini, Seyed Mohammad Amin Rasti;Amir, Saeed;Arani, Mohammad Reza Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.683-702
    • /
    • 2019
  • The present study aims to analyze the magneto-electro-elastic (MEE) vibration of a functionally graded carbon nanotubes reinforced composites (FG-CNTRC) cylindrical shell. Electro-magnetic loads are applied to the structure and it is located on an elastic foundation which is simulated by visco-Pasternak type. The properties of the nano-composite shell are assumed to be varied by temperature changes. The third-order shear deformation shells theory is used to describe the displacement components and Hamilton's principle is employed to derive the motion differential equations. To obtain the results, Navier's method is used as an analytical solution for simply supported boundary condition and the effect of different parameters such as temperature variations, orientation angle, volume fraction of CNTs, different types of elastic foundation and other prominent parameters on the natural frequencies of the structure are considered and discussed in details. Design more functional structures subjected to multi-physical fields is of applications of this study results.

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.

Dynamic stress, strain and deflection analysis of pipes conveying nanofluid buried in the soil medium considering damping effects subjected to earthquake load

  • Abadi, M. Heydari Nosrat;Darvishi, H. Hassanpour;Nouri, A.R. Zamani
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.445-452
    • /
    • 2019
  • In this paper, dynamic stress, strain and deflection analysis of concrete pipes conveying nanoparticles-water under the seismic load are studied. The pipe is buried in the soil which is modeled by spring and damper elements. The Navier-Stokes equation is used for obtaining the force induced by the fluid and the mixture rule is utilized for considering the effect of nanoparticles. Based on refined two variables shear deformation theory of shells, the pipe is simulated and the equations of motion are derived based on energy method. The Galerkin and Newmark methods are utilized for calculating the dynamic stress, strain and deflection of the concrete pipe. The influences of internal fluid, nanoparticles volume percent, soil medium and damping of it as well as length to diameter ratio of the pipe are shown on the dynamic stress, strain and displacement of the pipe. The results show that with enhancing the nanoparticles volume percent, the dynamic stress, strain and deflection decrease.