• 제목/요약/키워드: navier method

검색결과 1,246건 처리시간 0.024초

조석분류를 이용한 연안해역의 수질정화에 관한 수치적 평가 (Numerical Assessment for Coastal Water Purification Utilizing a Tidal Jet System)

  • 박종천
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.58-63
    • /
    • 2006
  • When the costal zone surrounded by a breakwater has a narrow vertical opening, currents in the vicinity of a narrow entrance can result in a jet flow, coinciding with the tide. Such a Tidal-Jet Generator(TJG) can change the water mass distribution and transport processes in the domain of influence of the jet. Also, it can decrease the residual time of them. In the present study, the water purification utilizing tidal jets in the coastal zone over constant bathymetry are estimated numerically, using a finite-difference numerical scheme, named the NS-MAC-TIDE method, which isbased on the fully 3D Navier-stokes(NS) equations. The shear velocity near the inlet of the TJG are predicted from the flow field simulation, and are assessed qualitatively with the development of scouring or sediment that is caused by the change of diffusion or sweeping flowup from the seabed of sediment particles. Finally, through solving a transport equation of concentration, the residual time related on mass transport processes and the flushing mechanism for water purification are investigated.

An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate

  • Wu, Lanhe;Jiang, Zhiqing;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.641-654
    • /
    • 2004
  • This paper presents a theoretic model of a smart structure, a transversely isotropic piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane of the plate are not taken to be account. By using Fourier's series expansion, an exact Navier typed analytical solution for deflection and electric potential of the simply supported smart plate is obtained. The electric boundary conditions are being grounded along four vertical edges. The external voltage and non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and the applicability of the present method. Then some new results of the electric potentials and displacements are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage. These results are very useful for distributed sensing and finite element verification.

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter

  • Houari, Mohammed Sid Ahmed;Bessaim, Aicha;Bernard, Fabrice;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.13-24
    • /
    • 2018
  • A size-dependent novel hyperbolic shear deformation theory of simply supported functionally graded beams is presented in the frame work of the non-local strain gradient theory, in which the stress accounts for only the nonlocal strain gradients stress field. The thickness stretching effect (${\varepsilon}_z{\neq}0$) is also considered here. Elastic coefficients and length scale parameter are assumed to vary in the thickness direction of functionally graded beams according to power-law form. The governing equations are derived using the Hamilton principle. The closed-form solutions for exact critical buckling loads of nonlocal strain gradient functionally graded beams are obtained using Navier's method. The derived results are compared with those of strain gradient theory.

분리된 원주압 보조 액압유도 역 재드로잉공정에 관한 연구 (Study on the Hydromechanical Reverse Redrawing Pprocess Assisted by Separate Radial Pressure)

  • 김봉종;이동우;양동열;박찬승
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3728-3740
    • /
    • 1996
  • High-quality cups of deep drawing ratio of more than four cannot be simply drawn by conventional drawing and redrawing processes. In the present study, after the first deep drawing process, subsequent hydromechanical reverse redrawing with controlled radial pressure is employed. In order to increase the deep drawing ratio up to muchmore than four, the radial pressure should be controlled independently of the chamber pressure and thus an optimum forming condition can be found easily by varying the radial pressure. The process has been subjected to finite element analysis by using the rigid-platic material modeling considering all the frictional conditions induced by the hydrostatic pressure. In order to consider the pressure effect on the sheet, the pressure distributions on the flange part and the side wall part are calculated mumerically from simplified Navier-stokes equation. The comparison of the computation with the experiment has shown that the finite element modeling can be conveniently emplyed for the design of the process with reliability from the viewpoint of formability.

초음속 증기 이젝터 시스템의 작동 특성에 관한 연구 (Study of the Operation Characteristics of the Supersonic Steam Ejector System)

  • 김희동;이준희;우선훈;최보규
    • 한국추진공학회지
    • /
    • 제5권3호
    • /
    • pp.33-40
    • /
    • 2001
  • 본 연구에서는 초음속 증기 이젝터의 작동특성을 조사하기 위하여 압축성 축대칭 Navier-Stokes 방정식의 수치계산을 행하였다. 2차 유동측의 압력 및 배압을 변화시켜 이들 압력이 혼입유량에 미치는 영향을 조사하였다. 연구의 결과로부터 초음속 증기 이젝터에서 2차 유동측 압력 및 배압은 임계 혼입유량에 상당한 영향을 미치며, 1차구동노즐의 형상과 2차유동의 압력이 주어지는 경우 임계혼입 유량비를 예측할 수 있음을 알았다. 수치계산 결과는 실험에서 얻은 임계혼입유량비를 잘 예측하였다.

  • PDF

복합추진장치가 포함된 축대칭 물체 주위유동의 수치적 연구 (Numerical Study of the Flow Field Around an Axisymmetric Body with Integrated Propulsors)

  • 안종우;문일성;표상우;서정천
    • 대한조선학회논문집
    • /
    • 제36권4호
    • /
    • pp.1-8
    • /
    • 1999
  • 복합 추진장치가 포함된 경우와 포함되지 않은 경우에 축대칭 물체 주위 유동특성을 조사하기 위한 수치적 연구가 수행되었다. 비압축성 RANS 방정식을 유한체적법으로 해석하는 수치적 방법이 표준 $k-\varepsilon$ 난류모형을 이용하여 수행된다. 선체와 추진기의 상호작용은 패널법에 의하여 계산된 유기속도를 프로펠러 면에 분포하여 경계조건으로 처리하는 방법을 사용하였다. 수치적 결과로부터 얻어진 표면압력분포와 유속분포는 시험 결과와 비교된다. 본 연구에서 얻어진 수치계산 프로그램은 복합추진장치의 설계에 이용될 수 있다고 생각된다.

  • PDF

Fillet 형상이 접합부 주위의 유동에 미치는 영향 (Effects of the Fillet Forms on the Juncture Flow)

  • 김선영
    • 대한조선학회논문집
    • /
    • 제34권1호
    • /
    • pp.24-40
    • /
    • 1997
  • 선체에 부착되는 부가물 주위의 유동 개선에 응용하기 위하여 평판과 스트럿이 만나는 접합부 주위에 fillet을 설치할 때 스트럿 주위의 유동이 어떤 영향을 받는 지를 수치계산을 통하여 살펴보았다. 높이 폭 비 및 곡률이 서로 다픈 5가지 형상의 fillet을 스트럿의 앞날 부근에 설치하고 각 경우에 대하여 스트럿에 작용하는 항력 및 스트럿의 후류를 계산하고 이를 비교하였다. 계산방법으로는 N-S 방정식을 풀기 위하여 MAC 방법이 사용되었고 유동은 Reynolds수 5000으로 층류이다. 계산결과 높이-폭 비가 작을 수록, 스트럿의 선단에서 만들어지는 horseshoe 보오텍스의 크기와 형상이 비슷할수록 그리고 오목한 곡률을 갖는 fillet이 스트럿의 항력 감소 및 후류를 균일하게 하는데 더 효과적인 것으로 나타났다.

  • PDF

추진기 날개 끝 형상변화에 따른 보오텍스 유동에 대한 수치해석 (Numerical Analysis of a Tip Vortex Flow for Propeller Tip Shapes)

  • 박선호;서정화;김동환;이신형;김기섭
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.501-508
    • /
    • 2011
  • In order to control the tip vortex cavitation occurring around the tip of a rotating propeller blade, researches on the propeller cavitation and blade tip vortex flows have been increased. In this paper, the propeller tip vortex flow for a blunt and sharp tips was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. In numerical open water test, torques, thrusts, pressure distributions and vortex flows were compared for various rotating speeds. To consider a hull wake, the nominal wake was specified in inlet boundary condition. Pressure distributions and vortex flows with the hull wake were investigated for various propeller rotating angles. From the results, it was confirmed that the blunt tip propeller delayed the tip vortex flow.

Unsteady flow around a two-imensional section of a vertical axis turbine for tidal stream energy conversion

  • Jung, Hyun-ju;Lee, Ju-Hyun;Rhee, Shin-Hyung;Song, Mu-Seok;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.64-69
    • /
    • 2009
  • The two-dimensional unsteady flow around a vertical axis turbine for tidal stream energy conversion was investigated using a computational fluid dynamics tool solving the Reynolds-Averaged Navier-Stokes equations. The geometry of the turbine blade section was NACA653-018 aiifoil. The computational analysis was done at several different angles of attack and the results were compared with the corresponding experimental data for validation and calibration. Simulations were then carried out for the two-dimensional cross section of a vertical axis turbine. The simulation results demonstrated the usefulness of the method for the typical unsteady flows around vertical axis turbines. The optimum turbine efficiency was achieved for carefully selected combinations of the number of blades and tip speed ratios.