• Title/Summary/Keyword: natural wind

Search Result 869, Processing Time 0.026 seconds

Vibration Analysis of wind turbine gearbox with frequency response analysis (주파수 응답해석을 통한 풍력발전기용 기어박스의 동특성해석)

  • Park, Hyunyong;Park, Junghun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.178.2-178.2
    • /
    • 2010
  • The wind turbine gearbox is important rotating part to transmit torque from turbine blade to generator. Generally, gear shaft which rotates causes vibration by influence of stiffness and mass with gear shaft. Root cause of this vibration source is well known to gear transmission error that is decided from gear tooth property. Transmission error excites a gear, and makes excitation force that is vibrated shaft. This vibration of shaft is transmitted to gearbox housing through gearbox bearing. If the resonance about which the natural frequency of the gearbox accords with shaft exciting frequency occurs, a wind turbine can lead to failure. The gearbox for wind turbine should be considered influence of vibration as well as the fatigue life and its performance by such reason. The cause to vibration should be closely examined to reduce influence of such vibration. In this paper, the cause of the vibration which occurs by a gearbox is closely examined and the method which can reduce the vibration which occurred is shown. It is compared with vibration test outcome of a 3MW gearbox for verification of the method shown by this paper.

  • PDF

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

Structural Characteristics for the Hybrid Street-Lamp of a Small Wind Turbine and Photovoltaic Power System (풍력-태양광 복합 가로등 구조특성 연구)

  • Jeon, Hyun-Jun;Jang, Choon-Man
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2013
  • In the present study, structure analysis has been performed to understand the deflection and stress distribution for a hybrid street-lamp having a vertical-axis wind turbine and a photovoltaic panel. Modal analysis is also evaluated to avoid resonance gerenerated by sychronism between a turbine and a lamppost. To analyze deflection, stress and frequency, general analysis code(ANSYS-Mechanical 13) is employed in the present work. Throughout structure analysis in the hybrid street-lamp, maximum stress is observed at the connecting position between a turbine blade and a blade supporter. Campbell diagram which is combined the natural frequency of turbine blades and blade passing frequency is presented to analyze a system resonance. It is found that the resonance of the system having a rotating turbine blade and a lamppost can avoid by the optimal selection of geometric parameters of a wind turbine.

Stress Analysis of the Blade Joint for a Small Wind Turbine (소형풍력터빈 블레이드 체결부의 응력해석)

  • Kim, Deok-Su;Jung, Won-Young;Jung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, an analysis of the joint that transmits power from the blades to the generator is performed using the FEM (finite element method). The mode shapes and natural frequencies were extracted using experimental modal analysis in order to establish the FEM model. Then, the model was verified by comparing the mode shapes and natural frequencies to those obtained from the ANSYS modal analysis. Dynamic stress analysis was performed at the rated and limited wind speeds considering the wind load and gravity.

Optimal location planning to install wind turbines for hydrogen production: A case study

  • Mostafaeipour, Ali;Arabi, Fateme;Qolipour, Mojtaba;Shamshirband, Shahaboldin;Alavi, Omid
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.147-177
    • /
    • 2017
  • This study aims to evaluate and prioritize ten different sites in Iran's Khorasan provinces for the construction of wind farm. After studying the geography of the sites, nine criteria; including wind power, topography, wind direction, population, distance from power grid, level of air pollution, land cost per square meter, rate of natural disasters, and distance from road network-are selected for the analysis. Prioritization is performed using data envelopment analysis (DEA). The developed DEA model is validated through value engineering based on the results of brainstorming sessions. The results show that the order of priority of ten assessed candidate sites for installing wind turbines is Khaf, Afriz, Ghadamgah, Fadashk, Sarakhs, Bojnoord, Nehbandan, Esfarayen, Davarzan, and Roudab. Additionally, the outcomes extracted from the value engineering method identify the city of Khaf as the best candidate site. Six different wind turbines (7.5 to 5,000 kW) are considered in this location to generate electricity. Regarding an approach to produce and store hydrogen from wind farm installed in the location, the AREVA M5000 wind turbine can produce approximately $337ton-H_2$ over a year. It is an enormous amount that can be used in transportation and other industries.

The Power Quality about Wind/Diesel combined power generation in isolated area (고립지역의 풍력/디젤 복합발전 전력품질 특성)

  • Ko, Seok-Whan;Kim, Seok-Woo;Lee, Youn-Seop
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.245-249
    • /
    • 2009
  • Antarctic King Sejong Station was established in King George Island, the South Pole in 1988, and has been executing the monitoring studies on the change of antarctic natural environment. As an available power, the wind energy generator has been used in the form of hybrid with mainly diesel generator. Because the wind generation power sharply changes by wind energy, it must be careful during the system operation. When the power system becomes stable, the output performance of wind energy generator becomes stable. But, in case of unstable system, the errors frequently occur on the wind energy generator and it badly impacts the power system by output of wind energy generator. The purpose of this paper is to analyze suitability while operating the system of 10kW wind energy generator at Antarctic King Sejong Station, an isolated area, and to analyze the problem and improvements by power quality.

  • PDF

Accumulation of wind induced damage on bilinear SDOF systems

  • Hong, H.P.
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.145-158
    • /
    • 2004
  • The evaluation of the accumulation of permanent set for inelastic structures due to wind action is important in establishing a criterion to select a reduced design wind load and in incorporating the beneficial ductile behaviour in wind engineering. A parametric study of the accumulation of the permanent set as well as the ductility demand for bilinear single-degree-of-freedom (SDOF) systems is presented in the present study. The dynamic analysis of the inelastic SDOF system is carried out using the method of Newmark for artificially generated time history of wind speed. Simulation results indicate that the mean of the normalized damage rate is highly dependent on the natural frequency of vibration. This mean value is relatively insensitive to the damping ratio if the damping ratio is larger than 5%. The scatter associated with the accumulation of the permanent set is very significant. The consideration of the postyield stiffness can significantly reduce the accumulation of the permanent set if the ratio of the yield strength to the expected peak response is small. The results also show that the ductility demand due to the wind action over a period of one hour for flexible structures can be much less than that for rigid structures or structures with larger damping ratio if the SDOF systems are designed with a reduced peak response caused by the fluctuating wind.

A study of aerodynamic pressures on elevated houses

  • Abdelfatah, Nourhan;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.335-350
    • /
    • 2020
  • In coastal residential communities, especially along the coastline, flooding is a frequent natural hazard that impacts the area. To reduce the adverse effects of flooding, it is recommended to elevate coastal buildings to a certain safe level. However, post storm damage assessment has revealed severe damages sustained by elevated buildings' components such as roofs, walls, and floors. By elevating a structure and creating air gap underneath the floor, the wind velocity increases and the aerodynamics change. This results in varying wind loading and pressure distribution that are different from their slab on grade counterparts. To fill the current knowledge gap, a large-scale aerodynamic wind testing was conducted at the Wall of Wind experimental facility to evaluate the wind pressure distribution over the surfaces of a low-rise gable roof single-story elevated house. The study considered three different stilt heights. This paper presents the observed changes in local and area averaged peak pressure coefficients for the building surfaces of the studied cases. The aerodynamics of the elevated structures are explained. Comparisons are done with ASCE 7-16 and AS/NZS 1170.2 wind loading standards. For the floor surface, the study suggests a wind pressure zoning and pressure coefficients for each stilt height.

Effects of turbulence intensity and exterior geometry on across-wind aerodynamic damping of rectangular super-tall buildings

  • Quan, Y.;Cao, H.L.;Gu, M.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-209
    • /
    • 2016
  • Across-wind aerodynamic damping ratios are identified from the wind-induced acceleration responses of 15 aeroelastic models of rectangular super-high-rise buildings in various simulated wind conditions by using the random decrement technique. The influences of amplitude-dependent structural damping ratio and natural frequency on the estimation of the aerodynamic damping ratio are discussed and the identifying method for aerodynamic damping is improved at first. Based on these works, effects of turbulence intensity $I_u$, aspect ratio H/B, and side ratio B/D on the across-wind aerodynamic damping ratio are investigated. The results indicate that turbulence intensity and side ratio are the most important factors that affect across-wind aerodynamic damping ratio, whereas aspect ratio indirectly affects the aerodynamic damping ratio by changing the response amplitude. Furthermore, empirical aerodynamic damping functions are proposed to estimate aerodynamic damping ratios at low and high reduced speeds for rectangular super-high-rise buildings with an aspect ratio in the range of 5 to 10, a side ratio of 1/3 to 3, and turbulence intensity varying from 1.7% to 25%.

Study on the Effect of Earthquake Loads for Fixed Offshore Wind Turbines According to Soil Type (지반 종류에 따른 고정식 해상 풍력발전기 지진 하중 영향 연구 )

  • Yongoon Oh;Jeonggi Kim;Miseon Kim;Jonghun Jung;Johyug Bang
    • Journal of Wind Energy
    • /
    • v.14 no.1
    • /
    • pp.14-20
    • /
    • 2023
  • In this study, using the commercial software Bladed developed by DNV for integrated load calculation of wind turbines, the generation of seismic waves according to soil type based on Korea's domestic regulations, and load calculation considering earthquake conditions were performed according to the IEC standard, and load in the main coordinate system of the fixed offshore wind turbine was calculated. By comparing the calculated load with the design load of the fixed offshore wind turbine, the effect of earthquake loads according to soil type on the main components of fixed offshore wind turbines was evaluated. As a result of the evaluation, when an earthquake load on a wind turbine is considered, the effect of the earthquake load is related to the natural frequency of the major components and the magnitude of the adjacent acceleration in the earthquake response spectrum, and the earthquake load differs according to soil type and may exceed the design load.