• Title/Summary/Keyword: natural wind

Search Result 869, Processing Time 0.026 seconds

A Case Study on Heavy Rainfall Using a Wind Profiler and the Stability Index

  • Hong, Jongsu;Jeon, Junhang;Ryu, Chansu
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.221-232
    • /
    • 2015
  • In this study, the vertical characteristics of wind were analyzed using the horizontal wind, vertical wind, and vertical wind shear, which are generated from a wind profiler during concentrated heavy rain, and the quantitative characteristics of concentrated heavy rain were analyzed using CAPE, SWEAT, and SRH, among the stability indexes. The analysis of the horizontal wind showed that 9 cases out of 10 had a low level jet of 25 kts at altitudes lower than 1.5 km, and that the precipitation varied according to the altitude and distribution of the low-level jet. The analysis of the vertical wind showed that it ascended up to about 3 km before precipitation. The analysis of the vertical wind shear showed that it increased up to a 1 km altitude before precipitation and had a strong value near 3 km during heavy rains. In the stability index analysis, CAPE, which represents thermal buoyancy, and SRH, which represents dynamic vorticity, were used for the interpretation of the period of heavy rain. As SWEAT contains dynamic upper level wind and thermal energy, it had a high correlation coefficient with concentrated-heavy-rain analysis. Through the case studies conducted on August 12-13, 2012, it was confirmed that the interpretation of the prediction of the period of heavy rain was possible when using the intensive observation data from a wind profiler and the stability index.

Wind-tunnel simulations of the suburban ABL and comparison with international standards

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.15-34
    • /
    • 2011
  • Three wind-tunnel simulations of the atmospheric boundary layer (ABL) flow in suburban country exposure were generated for length scale factors 1:400, 1:250 and 1:220 to investigate scale effects in wind-tunnel simulations of the suburban ABL, to address recommended wind characteristics for suburban exposures reported in international standards, and to test redesigned experimental hardware. Investigated parameters are mean velocity, turbulence intensity, turbulent Reynolds shear stress, integral length scale of turbulence and power spectral density of velocity fluctuations. Experimental results indicate it is possible to reproduce suburban natural winds in the wind tunnel at different length scales without significant influence of the simulation length scale on airflow characteristics. However, in the wind tunnel it was not possible to reproduce two characteristic phenomena observed in full-scale: dependence of integral length scales on reference wind velocity and a linear increase in integral length scales with height. Furthermore, in international standards there is a considerable scatter of recommended values for suburban wind characteristics. In particular, recommended integral length scales in ESDU 85020 (1985) are significantly larger than in other international standards. Truncated vortex generators applied in this study proved to be successful in part-depth suburban ABL wind-tunnel simulation that yield a novel methodology in studies on wind effects on structures and air pollution dispersion.

Automated CFD analysis for multiple directions of wind flow over terrain

  • Morvan, Herve P.;Stangroom, Paul;Wright, Nigel G.
    • Wind and Structures
    • /
    • v.10 no.2
    • /
    • pp.99-119
    • /
    • 2007
  • Estimations of wind flow over terrain are often needed for applications such as pollutant dispersion, transport safety or wind farm location. Whilst field studies offer very detailed information regarding the wind potential over a small region, the cost of instrumenting a natural fetch alone is prohibitive. Wind tunnels offer one alternative although wind tunnel simulations can suffer from scale effects and high costs as well. Computational Fluid Dynamics (CFD) offers a second alternative which is increasingly seen as a viable one by wind engineers. There are two issues associated with CFD however, that of accuracy of the predictions and set-up and simulation times. This paper aims to address the two issues by demonstrating, by way of an investigation of wind potential for the Askervein Hill, that a good level of accuracy can be obtained with CFD (10% for the speed up ratio) and that it is possible to automate the simulations in order to compute a full wind rose efficiently. The paper shows how a combination of script and session files can be written to drive and automate CFD simulations based on commercial software. It proposes a general methodology for the automation of CFD applied to the computation of wind flow over a region of interest.

Field measurement-based wind-induced response analysis of multi-tower building with tuned mass damper

  • Chen, Xin;Zhang, Zhiqiang;Li, Aiqun;Hu, Liang;Liu, Xianming;Fan, Zhong;Sun, Peng
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.143-159
    • /
    • 2021
  • The 246.8-m-tall Beijing Olympic Tower (BOT) is a new landmark in Beijing City, China. Its unique architectural style with five sub-towers and a large tower crown gives rise to complex dynamic characteristics. Thus, it is wind-sensitive, and a double-stage pendulum tuned mass damper (DPTMD) has been installed for vibration mitigation. In this study, a finite-element analysis of the wind-induced responses of the tower based on full-scale measurement results was performed. First, the structure of the BOT and the full-scale measurement are introduced. According to the measured dynamic characteristics of the BOT, such as the natural frequencies, modal shapes, and damping ratios, an accurate finite-element model (FEM) was established and updated. On the basis of wind measurements, as well as wind-tunnel test results, the wind load on the model was calculated. Then, the wind-induced responses of the BOT with the DPTMD were obtained and compared with the measured responses to assess the numerical wind-induced response analysis method. Finally, the wind-induced serviceability of the BOT was evaluated according to the field measurement results for the wind-induced response and was found to be satisfactory for human comfort.

Monitoring of tall slender structures by GPS measurements

  • Chmielewski, Tadeusz;Breuer, Peter;Gorski, Piotr;Konopka, Eduard
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.401-412
    • /
    • 2009
  • A method is applied for the estimation of structural damage of tall slender structures using natural frequency and displacements measurements by GPS. The relationship between the variation in the global stiffness matrix (or in the stiffness of each finite element) and the change in the natural frequencies of the structure is given. In engineering practice the number of frequencies which can be derived by GPS measurement of long-period structures will be equal to one, two or three first natural frequencies. This allows us in initial studies to detect damage with frequency changes based on forward methods in which the measured frequencies are compared with the predicted analytical data. This idea, of health monitoring from possible changes to natural frequencies, or from a statement of excessive displacements is applied to the Stuttgart TV Tower.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

Probabilistic Assessment of Dynamic Properties of Offshore Wind Turbines Considering Soil-Pile Interaction (지반과 말뚝의 상호작용을 고려한 고정식 해상풍력터빈의 동적 특성에 대한 확률적 평가)

  • Yi, Jin-Hak;Kim, Sun-Bin;Han, Taek Hee;Yoon, Gil-Lim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.343-350
    • /
    • 2015
  • Extensive discussion on the optimal types of offshore wind turbine(OWT) among monopile, tripod and jacket in the intermediate depth of water has been actively carried out in worldwide wind turbine industry. Selecting the optimal types of OWT among several substructural types, it is required to consider the economic and technical feasibility including dynamically stable design of a wind turbine system. In this study, the effects of loading levels and uncertainties of soil properties on the natural frequency of OWT have been quantitatively investigated. In conclusion, the natural frequency of monopile-type OWTs has a significant level of uncertainty, hence it is very important to minimize the level of uncertainties in soil properties when the monopile is selected as a foundation for an OWT.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Structural Test Analysis Study for Manufacturing of Flax Fiber Composite Blades for 30kW Wind Turbines (30kW 풍력터빈용 아마섬유 복합재 블레이드 제조를 위한 구조 시험 분석 연구)

  • Hye-Jin Shin;Ji-Hyun Lee;Sung-Young Moon;Jounghwan Lee
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.32-36
    • /
    • 2023
  • Recently, as global environmental issues for sustainable development, such as carbon neutrality, have emerged, disposal methods of glass fiber composites, a material of existing wind turbines, have become a problem. To solve this problem, in this study, 30kW wind turbine blades were manufactured using flax fiber-based composites, which are eco-friendly natural fiber composites that can replace existing glass fiber composites, and their suitability was evaluated. First, mechanical strength tests were conducted to verify the feasibility of using eco-friendly natural flax fiber composites as a wind turbine blade material, and as a result, better strength were confirmed compared to previous studies on the properties of flax fiber composites. In addition, the suitability was confirmed through a static strength performance evaluation test to measure the static strength of the flax fiber composite blade using the manufactured 30kW class flax fiber composite blade.

Field monitoring of wind effects on a super-tall building during typhoons

  • Zhi, Lunhai;Li, Q.S.;Wu, J.R.;Li, Z.N.
    • Wind and Structures
    • /
    • v.14 no.3
    • /
    • pp.253-283
    • /
    • 2011
  • This paper presents the field measurement results of wind effects on a super-tall building (CITIC Plaza, 391 m high) located in Guangzhou. The field data such as wind speed, wind direction and acceleration responses were simultaneously and continuously recorded from the tall building by a wind and vibration monitoring system during two typhoons. The typhoon-generated wind characteristics including turbulence intensity, gust factor, peak factor, turbulence integral length scale and power spectral density of fluctuating wind speed were presented and discussed. The dynamic characteristics of the tall building were determined based on the field measurements and compared with those calculated from a 3D finite element model of the building. The measured natural frequencies of the two fundamental sway modes of the building were found to be larger than those calculated. The damping ratios of the building were evaluated by the random decrement technique, which demonstrated amplitude-dependent characteristics. The field measured acceleration responses were compared with wind tunnel test results, which were found to be consistent with the model test data. Finally, the serviceability performance of the super-tall building was assessed based on the field measurement results.