• 제목/요약/키워드: natural vibration

검색결과 3,240건 처리시간 0.036초

수치해석에 의한 심수 탱크구조물의 진동에 관한 연구 (Numerical Analysis of Vibration Characteristics in Deep Water Tank)

  • 배성용;홍봉기;배동명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1079-1084
    • /
    • 2003
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks ill contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics in deep water tank are investigated and discussed.

  • PDF

소형 IPMSM의 전자기적 진동원과 가진력의 상관관계 분석 (Correlation Analysis for Electormagnetic Vibration Source and RMF of Small IPMSM)

  • 이원식;조규원;전병길;김규탁
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.1986-1991
    • /
    • 2016
  • The vibration soucre of motor has a electromagnetic and mechanical causes. The most widely known, electromagnetic reasons are cogging torque and RMF(Radial magnetic force). Recently, analysis of the cogging torque has been made actively. but analysis of the RMF was not filled. So, in this paper, analyzed RMF. the vibration test were performed for the basic and reduced model of cogging torque and RMF. And it analyzed for the effect of each factor on the vibration. Finally, the vibration was formulated for stator's weight and RMF. To this end, natural, cogging torque and RMF of frequency were analyzed and these relationships were considered.

배의 상하(上下), 수평(水平) 및 비틂진동(振動)에 관(關)하여(제1보)(第1報) -Box형(型) Barge의 상하진동(上下振動)에 대(對)하여- (A Study on the Vertical, Horizontal and Torsional Vibration of Ship(1st Report))

  • 김사수
    • 대한조선학회지
    • /
    • 제8권2호
    • /
    • pp.1-12
    • /
    • 1971
  • This paper describes, firstly, on analytical method of computing the eigenvalues of vertical vibration of ships, taking into account for the distribution of hull weight including added mass and the effect of shear deflection and rotary inertia. The frequency equation is solved by Galerkins method into form of numerical integration. Applying the above described equation, model experiment of vertical vibration was carried out in order to varify the validity of the analytical method of vertical vibration. The model, which was made of acrylite plate, was ship-shaped wall-sided vessel with bulkheads, deck openings, and fore and after peak tank at both ends. The results of experiments carried out both in air and on water showed that the observed natural frequencies and the observed patterns of natural modes of vibration were in good agreement with analytically calculated values for 2,3, and 4-node vibration.

  • PDF

철도차량에서 사용하는 부유상구조의 진동절연특성에 관한 연구 (Study on the Vibration Reduction Characteristics of Floating Floors Used in Railway Vehicles)

  • 우관제;박희준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.305-309
    • /
    • 2006
  • In this paper vibration reduction characteristics of floating floors used in railway vehicles are studied. Vibration reduction characteristics are compared through a series of tests for elastically-coupled floor and rigidly-coupled floor. It was found that elastically-coupled floor has larger vibration reduction amount than rigidly-coupled floor. Around the fundamental natural frequency, however, elastic floor has poor vibration reduction effect than rigid floor. Measures to reduce structure-borne noise are also discussed based on the test results. Structure-borne noise for running railway vehicles cannot be reduced by an effort to deviate resonance between natural frequency of floors and major exciting forces. Instead, reducing vibration level of top floor and using covers which have low sound radiation coefficient will be effective for reducing structure-borne noise.

  • PDF

MFC 작동기를 이용한 보강 Hull 구조물의 능동 진동 제어 (Vibration Control of Stiffened Hull Structure Using MFC Actuator)

  • 전준철;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.643-649
    • /
    • 2011
  • This work presents an active vibration control of a stiffened hull structure using a flexible macro fiber composite(MFC) actuator. As first step, the governing equation of the hull structure is derived in a matrix form and its dynamic characteristics such as natural frequency are obtained via a finite element analysis(FEA). The natural frequencies obtained from the FEA are compared with those determined from experimental measurement. After formulating the control model in a state space representation, an optimal controller is designed in order to attenuate the vibration of the stiffened hull structure. The controller is then empirically realized through dSPACE and control responses are evaluated in time domain.

제진재가 삽입된 바닥 구조의 진동특성 (Vibration Characteristics of the Floor Structures inserted with Damping Materials)

  • 정영;유승엽;전진용;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.377-380
    • /
    • 2005
  • Damping materials encompass a broad range of materials, including, but not limits to, pressure sensitive adhesives, epoxies, rubbers, foams, thermoplastics, enamels and mastics. Their common characteristic is that their modulus is represented by a complex quantity, possessing both a stored and dissipative energy component. Loss factor of damping material analyzed more than 2 times than rubber to 1.5 $\sim$ 2.3, could know that Damping layer has excellent attenuation performance in side of vibration reduction. Measurements of vibration using accelerometers by adhesion of Damping layer, square Plate by Separation of Damping layer is less binding of Damping layer, analyzed low loss factor and Natural Frequency by free Vibration of Square Plate.

  • PDF

축류송풍기 부착형 공냉식 열교환기의 진동저감 (Vibration Reduction of an Air Cooled Heat Exchanger with Axial Flow Fan)

  • 정구충;최연선
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.163-168
    • /
    • 2001
  • Vibration problems occurred in an air cooled heat exchanger with axial flow fan for a petrochemical plant were investigated. Experimental field test and theoretical verification were performed. To find the main cause of the high vibration of the fan at the air inlet of the axial fan, the frequency spectrum was measured. The natural frequency of the driving support of the heat exchanger was numerically calculated. Both of the measured and the natural frequency were approximately equal to the blade passing frequency. Because it was difficult to modify the structure of the driving support during the normal operation of the plant, the blade number of the fan was increased, which greatly reduced the vibration level of the heat exchanger.

  • PDF

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Nazemnezhad, Reza;Rabiei, Mohaddese;Shafa'at, Pouyan;Eshaghi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.535-547
    • /
    • 2021
  • This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

구형물체 주위의 자연대류 열전달에 대한 진동효과 (Effect of Vibration on Natural Convective Heat Transfer around a Spherical Body)

  • 박희용;조승환
    • 대한설비공학회지:설비저널
    • /
    • 제7권3호
    • /
    • pp.151-159
    • /
    • 1978
  • A heat transfer model for the case of simultaneous vibration of both the heated surface and its surrounding medium is constructed and the dimensional analysis is applied to this model in order to and the governing dimensionless Parameters in which the vibration effects the heat transfer. In the second Part of this study, an experimental investigation of the effect of vibration on natural convective heal transfer from spheres has been performed for the case of the external oscillatory motion being imposed on the heated surface which is immersed in an otherwise undisturbed air, The ranges of the experimental variables were: temperature difference 10 to $120^{\circ}C$; vibration frequency 10 to 120Hz; displacement amplitude 1.3 to 12.5mm. Three different diameter aluminum were used as the experimental models. Improvements in heat transfer due to vibration were observed, with the maximum increase being 330 Percent. A dimensionless correlation describing the measured heat transfer data is given.

  • PDF

발사환경에 대한 인공위성 전장품의 구조진동 해석 (Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments)

  • 박태원;정일호;한상원;김성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.768-771
    • /
    • 2003
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, electronic equipment (KOMPSAT 2, RDU : Remote Drive Unit) of a satellite consists of aluminum case containing PCB (Printed circuit boards). Each PCB has resistors and IC (Integrated circuits). Noise and vibration of wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation. random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when tile frequency of random vibration meets with natural frequency of PCB. fatigue fracture nay occur in the part of solder joint. The launching environment, thus. needs to be carefully considered when designing the electronic equipment of a satellite. In general. the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM(Finite Element Method) or vibration test. In this study. the natural frequency and dynamic deflection of PCB are measured by FEM, aud the safety of the electronic components of PCB is being evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs from the electronic equipments of a satellite to home electronics.

  • PDF