• 제목/요약/키워드: natural seismic base isolation

검색결과 31건 처리시간 0.03초

Seismic base isolation for structures using river sand

  • Patil, S.J.;Reddy, G.R.;Shivshankar, R.;Babu, Ramesh;Jayalekshmi, B.R.;Kumar, Binu
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.829-847
    • /
    • 2016
  • Generally seismic isolation is achieved by supporting the structure on laminated rubber bearings, friction pendulum bearings, roller bearings etc. Very little work has been performed using soil as a base isolation media. Experiments and analytical work has been performed on a structural model with isolated footing and found encouraging results. Details of this work are presented in this paper.

Effects of the nonlinear behavior of lead-rubber bearings on the seismic response of bridges

  • Olmos, B.A.;Roesset, J.M.
    • Earthquakes and Structures
    • /
    • 제1권2호
    • /
    • pp.215-230
    • /
    • 2010
  • The main objectives of this work were to investigate the effects of the nonlinear behavior of the isolation pads on the seismic response of bridges with rubber bearings, and to identify when base isolation improved their seismic performance. To achieve these objectives a parametric study was conducted designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (accelerations, displacements and pier seismic forces) were evaluated for three different structural models subjected to three earthquakes with different dynamic characteristics. The first represented bridges without base isolation; the second corresponded to the same bridges including now rubber bearings as an isolation system, with linear elastic behavior that shifted the natural period of the bridge by a factor of 2 to 4. In the third model the seismic response of bridges supported on lead-Rubber bearings was studied accounting for the nonlinear behavior of the lead. The results show clearly the importance of the nonlinear behavior on the seismic performance of the bridges.

Seismic evaluation and retrofitting of reinforced concrete buildings with base isolation systems

  • Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.293-311
    • /
    • 2016
  • A parametric study on the nonlinear seismic response of isolated reinforced concrete structural frame is presented. Three prototype frames designed according to the 1954 Hellenic seismic code, with number of floor ranging from 1 to 3 were considered. These low rise frames are representative of many existing reinforced concrete buildings in Greece. The efficacy of the implementation of both lead rubber bearings (LRB) and friction pendulum isolators (FPI) base isolation systems were examined. The selection of the isolation devices was made according to the ratio $T_{is}/T_{fb}$, where Tis is the period of the base isolation system and $T_{bf}$ is the period of the fixed-base building. The main purpose of this comprehensive study is to investigate the effect of the isolation system period on the seismic response of inadequately designed low rise buildings. Thus, the implementation of isolation systems which correspond to the ratio $T_{is}/T_{fb}$ that values from 3 to 5 is studied. Nonlinear time history analyses were performed to investigate the response of the isolated structures using a set of three natural seismic ground motions. The evaluation of each retrofitting case was made in terms of storey drift and storey shear force while in view of serviceability it was made in terms of storey acceleration. Finally, the maximum developed displacements and the residual displacements of the isolation systems are presented.

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

Experimental Study on Seismic Performance of Base-Isolated Bridge

  • Chung, Woo Jung;Yun, Chung Bang;Kim, Nam Sik;Seo, Ju Won
    • 한국지진공학회논문집
    • /
    • 제2권3호
    • /
    • pp.51-60
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrated that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation systems using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminate rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the deck acceleratino and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Numerical assessment of seismic safety of liquid storage tanks and performance of base isolation system

  • Goudarzi, Mohammad Ali;Alimohammadi, Saeed
    • Structural Engineering and Mechanics
    • /
    • 제35권6호
    • /
    • pp.759-772
    • /
    • 2010
  • Seismic isolation is a well-known method to mitigate the earthquake effects on structures by increasing their fundamental natural periods at the expense of larger displacements in the structural system. In this paper, the seismic response of isolated and fixed base vertical, cylindrical, liquid storage tanks is investigated using a Finite Element Model (FEM), taking into account fluid-structure interaction effects. Three vertical, cylindrical tanks with different ratios of height to radius (H/R = 2.6, 1.0 and 0.3) are numerically analyzed and the results of response-history analysis, including base shear, overturning moment and free surface displacement are reported for isolated and non-isolated tanks. Isolated tanks equipped by lead rubber bearings isolators and the bearing are modeled by using a non-linear spring in FEM model. It is observed that the seismic isolation of liquid storage tanks is quite effective and the response of isolated tanks is significantly influenced by the system parameters such as their fundamental frequencies and the aspect ratio of the tanks. However, the base isolation does not significantly affect the surface wave height and even it can causes adverse effects on the free surface sloshing motion.

기기면진 기반 원전 내진성능 상향 타당성 검토 (Feasibility Study for Seismic Performance Enhancement of NPP Based on Equipment Base Isolation)

  • 이진형;신태명;구경회
    • 한국압력기기공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.88-95
    • /
    • 2018
  • In this study, to enhance the seismic performance of nuclear power plants (NPP), a small laminated rubber bearing (LRB) is chosen as a seismic design option of the vulnerable equipment. Prior to the application of equipment base isolation, it is necessary to review the feasibility that the technique contributes enough to the seismic performance of NPP by analysis. At first, some preliminary design of small LRBs for equipment is carried out. Design parameters such as horizontal and vertical stiffnesses, design natural frequencies are checked by calculation and analysis for the four design options considering various upper weights. Performance test of small LRB is to be carried out to verify static performance using the results.

3차원 면진장치를 이용한 URANUS 액체금속로의 지진응답감소 (Reduction in Seismic Response of URANUS Liquid Metal Reactor by Using Three-Dimensional Seismic Isolator)

  • 이국희;김윤재;류강묵;황일순;유봉
    • 한국압력기기공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.30-39
    • /
    • 2011
  • URANUS (Ubiquitous, Robust, Accident-forgiving, Non-proliferating, Ultra-lasting and Sustainer) has been developed with 35MWe (100MWth) operating without primary coolant pump, capitalizing on natural circulation capability of lead-bismuth eutectic (LBE) for long-life small and robust power units. To ensure the structural integrity, the large safety margin against Safe Shutdown Earthquake, 0.3g, and furthermore the cost effectiveness for URANUS, three-dimensional seismic base isolation design has been developed. The analytical model has been developed and seismic time history analyses have been carried out. The advantage for using three-dimensional seismic base isolation for URANUS has been discussed.

지진 격리된 교량의 내진성능에 대한 실험적 연구 (Experimental Study on Seismic Performance of Base-Isolated Bridge)

  • Chung, Woo-Jung;Yun, Chung-Bang;Kim, Nam-Sik;Seo, Ju-Won
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.144-153
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrates that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation system using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminated rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

LNG 저장탱크의 면진시스템 적용을 위한 내진설계 (Seismic design for application of LNG storage tank isolation system)

  • 서기영;박현재;양성영;김남식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.132-138
    • /
    • 2013
  • Natural gas as a clean fuel of the world demand for the trend is gradually increasing demand for clean energy in the country and there is growing interest. Therefore, LNG storage tanks and related facilities in the country of the importance of leading a community-based facility has emerged. So common sense that an earthquake with a seismic isolation device LNG storage tank similar to the actual behavior of the analytical model which can describe the development and construction of storage tanks to enhance the safety and economic design techniques need to be developed. In this study, a base isolation system, seismic analysis procedure of LNG storage tanks, and Triple-FPB developed a mathematical model of the present crystallized and complexity factors to the sum over histories model simplifies the complex behavior of the LNG storage tank with base isolation system how to interpret the seismic isolation is proposed.

  • PDF