• Title/Summary/Keyword: natural rubber compound

Search Result 43, Processing Time 0.024 seconds

High Thermal Conductive Natural Rubber Composites Using Aluminum Nitride and Boron Nitride Hybrid Fillers

  • Chung, June-Young;Lee, Bumhee;Park, In-Kyung;Park, Hyun Ho;Jung, Heon Seob;Park, Joon Chul;Cho, Hyun Chul;Nam, Jae-Do
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Herein, we investigated the thermal conductivity and thermal stability of natural rubber composite systems containing hybrid fillers of boron nitride (BN) and aluminum nitride (AlN). In the hybrid system, the bimodal distribution of polygonal AlN and planar BN particles provided excellent filler-packing efficiency and desired energy path for phonon transfer, resulting in high thermal conductivity of 1.29 W/mK, which could not be achieved by single filler composites. Further, polyethylene glycol (PEG) was compounded with a commonly used naphthenic oil, which substantially increased thermal conductivity to 3.51 W/mK with an excellent thermal stability due to facilitated energy transfer across the filler-filler interface. The resulting PEG-incorporated hybrid composite showed a high thermal degradation temperature (T2) of 290℃, a low coefficient of thermal expansion of 26.4 ppm/℃, and a low thermal distortion parameter of 7.53 m/K, which is well over the naphthenic oil compound. Finally, using the Fourier's law of conduction, we suggested a modeling methodology to evaluate the cooling performance in thermal management system.

Rubber Compounds with High Gas Barrier Property by Mixing Nylon 6 to Maleic Anhydride Grafted ENR 50 (무수 말레인산으로 그래프트된 ENR 50에 Nylon 6를 혼합한 기체 고차단성 고무 배합물)

  • Lim, Jong Hyuk;Cho, Ur Ryong
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.770-776
    • /
    • 2013
  • The ENR 50 having the lowest gas permeability was blended with Nylon 6 which exhibits superior gas permeability, excellent wear resistance by using a twin-screw extruder. The blended materials showed the increased gas barrier property and physical properties, but did not yield a great synergistic effect due to low dispersion of Nylon 6 to ENR 50. To improve dispersion of Nylon 6 in the rubber matrix, maleic anhydride (MAH) was grafted to ENR 50. The grafting reaction between MAH and ENR 50 was evidenced using IR spectroscopy. The grafted and blended materials, ENR 50- g-MAH/Nylon 6 compounds, resulted in an enhanced gas barrier property and physical properties compared with compounds without MAH. The compound at 5 phr of MAH showed the highest crosslinking density and the best performances.

Natural Rubber-Clay Nanocomposites by Latex Method : Morphology and Mechanical Properties (라텍스법에 의한 천연고무-클레이 나노 복합재료: 모폴로지와 기계적 물성)

  • Kim, W.H.;Kang, J.H.;Kang, B.S.;Cho, U.R.
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • In this study, modified DA-MMT filled NR/DA-MMT nanocomposites were manufactured by a latex method and a compounding method. Cure characteristics and mechanical properties of the Cloisite 15A, carbon black, Na-MMT filled NR compounds and the DA-MMT filled NR compound by a latex method were also evaluated. The filler content of all compounds was 10phr except the carbon black filled compound. Degree of intercalation and dispersion was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). According to the XRD diffraction pattern and TEM analysis, extensive intercalation and homogeneous dispersion of the clay were obtained after the two-roll milling. Although the layer distance was increased, some parts of DA-MMT showed the layer distance of Na-MMT after vulcanization. DA-MMT filled NR compounds showed the highest ODR torques, tensile strength, modulus, and tear energy. The NR/DA-MMT nanocomposite (by a latex method) compared with a NR/DA-MMT nanocomposite (by a compounding method) was found that the improvement of the mechanical properties was mainly due to the degree of dispersion of the clay.