• Title/Summary/Keyword: natural oxidation

Search Result 648, Processing Time 0.027 seconds

Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights

  • Kalmakhanova, Marzhan Seitovna;Diaz de Tuesta, Jose Luis;Kabykenovna, Bakytgul;Gomes, Helder Teixeira
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.186-196
    • /
    • 2020
  • Pillared clays with Zr and Fe/Cu/Zr polycations have been prepared from natural clays found in large deposits of Kazakhstan and assessed as catalysts for the catalytic wet peroxide oxidation (CWPO), using 4-nitrophenol (4-NP) as model compound. The performance of the catalysts was followed by measuring the concentration of 4-NP, H2O2 and the total organic carbon (TOC), considering C4-NP = 5 g L-1, $C_{H_2O_2}$ = 17.8 g L-1, Ccat = 2.5 g L-1, initial pH = 3.0 and T = 50℃. At those selected conditions, the pillared clays showed higher activity than natural clays in the CWPO of 4-NP. The conversion of the model pollutant was complete when Fe/Cu/Zr-PILCs were used, with the TOC removal reaching 78.4% after 24 h with the best Fe/Cu/Zr-PILC. The H2O2, 4-NP and TOC time-evolution was well described by a kinetic model based on TOC lumps in three blocks, considering the initial TOC (corresponding to 4-NP), the production of oxidizable intermediates and the formation of refractory products.

The Effect of Ginseng Extracts on the Photooxidation of Liposome I. The protective effect of the formation of hydroperoxides (Liposome의 광산화반응에 미치는 인삼추출물의 영향 제1보. Hydroperoxide 생성 억제 효과)

  • Baek, Tae-Hong;Kim, Yeong-Ho;Lee, Jun-Hong
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.379-384
    • /
    • 1990
  • In order to study the lipid peroxidation caused by light and the protective action it in biological memberane, reverse-phase evaporation liposome (REV) was employed as a model memberance and the effect of several antioxidants and ginseng water extracts were tested. In the presence of photosensitizer, liposome was oxidized easily and the oxidation index dut to the peroxidation was increased. The oxidation index of liposome was increased according to the increase in temperature. When dl-${\alpha}$-tocopherol, ${\beta}$-carotene or L-ascorbic acid was added into the reaction mixture, the photooxidation of liposome was inhibited. Ginseng water extract and crude saponin inhibited the rate of oxidation index of liposome in low concentration but increase in high concentration. On the other hand, when lipid hydroperoxide of liposome was tested by ferrothiocyanate method, ginseng water extract and crude saponin acted as antioxidants.

  • PDF

Nanoparticles Emission Characteristics of Heavy-Duty CNG Engine with Oxidation Catalyst (산화촉매를 장착한 대형 CNG 엔진의 나노입자 배출특성)

  • Kim, T.J.;Kim, H.N.;Choi, B.C.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.27-33
    • /
    • 2008
  • Natural gas has been considered one of the most promising alternative fuels for transportation because of its abundance as well as its ability to reduce regulated pollutants. We measured emission characteristics of nanoparticles from lean burn H/D(Heavy-Duty) CNG (Compressed Natural Gas) engine equipped with oxidation catalysts. The experiments were carried out to measure the emission and engine performance according to the ESC test cycle. The CO and THC conversion efficiencies on the best catalyst in the ESC test cycle achieved about 91 % and 83 %, respectively. From the measurement by the SMPS, the number of nanoparticles emitted from H/D CNG engine is reduced by about 99 % which is more than that of 2.5 L diesel engine. The particle number concentrations of H/D CNG engine were almost nanoparticles. Nanoparticles smaller than 30 nm emitted from the H/D CNG engine and diesel engine equipped with a CDPF(Catalyzed Diesel Particulate Filter) were quite similar. However, the particles bigger than 30nm from the CNG engine were smaller than the particles from diesel engine equipped with a CDPF. The higher the CNG engine load, the lower the particle number from engine-out, but it increased slightly at full load.

  • PDF

Effects of Natural Plant Materials on Color and Lipid Oxidation of Ground Pork (식물 소재 첨가가 분쇄 돈육의 육색 및 지방 산화에 미치는 영향)

  • Choi, Min-Hee;Chung, Hai-Jung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.959-964
    • /
    • 2008
  • The principal objective of this study was to assess the effects of the addition of natural plant materials on the color and lipid oxidation of ground pork. Ground pork was blended with 0.3% (w/w) of cactus, fennel seed, orange peel, and rosemary, respectively, and stored for 8 days at $2^{\circ}C$. The pH, meat color, thiobarbituric acid reactive substances (TBARS) values, and metmyoglobin (MetMb) contents were measured. A gradual increase in pH was noted with increases in the storage time. The Hunter a (redness) value decreased until 6 days of storage, and evidenced no noticeable changes there after, and the cactus evidenced significantly higher a values than other groups over time (p<0.05). The TBARS formation was effectively inhibited by the addition of rosemary for 6 days of storage, reflective of strong antioxidative activity (p<0.05). The antioxidative activity on the lipid oxidation of cooked pork patties was noted in the following order: rosemary, fennel seed, cactus, and orange peel. The MetMb contents increased according to storage period, and no significant differences were noted among the meat patties.

  • PDF

Biological Activity Analysis of Potato-derived Polar Compounds (감자 유래 극성화합물의 생리활성 분석)

  • Kim, Dae Yoon;Nam, Jung Hwan;Lee, Jae Kwon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.62-62
    • /
    • 2019
  • Natural substances have various physiological activities. Substances isolated from natural substances are known to be safer and more potent than pharmaceuticals. Potatoes not only act as energy sources but also contain active ingredients such as vitamins and minerals. In particular, the potato contains a large amount of polar compounds, including the saponin in the polar compounds, and the physiological activity of the saponins, such as immunity enhancement, antioxidant and anti-inflammatory is known. In this study, the antioxidative activity of polar compounds from five potatoes was examined by chemical base anti-oxidation assay and cell based anti-oxidation assay. In the chemical base anti-oxidation assay, DPPH experiment showed activity in the order of Hongyoung, Haryung, Seohong, Sumi, and Jayoung. In the LPA experiment, IC50 was lower in the order of Jayoung, Seohong, Sumi, Hongyoung, and Haryung. In the cell based anti-oxidation assay, the smallest amount of ROS was generated when the compound was derived from Haryung and hongyoung, and strong SOD activity was observed in Sumi and Jayoung. The results of this study reveal the antioxidative effect of polar compounds extracted from various kind of potatoes, which will enable the acquisition of new bioactive candidates and the establishment of new profit generation models for farmers.

  • PDF

Study on Controlling Factors for Soil Structure in Creation of Man-made Tidal Flat (인공 간석지 창출에 있어서 토양구조를 결정하는 인자에 관한 연구)

  • 이정규;최영찬
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.587-592
    • /
    • 1999
  • The purpose of this study was to identify the controlling factors to construct tidal flat ecosystems having similar characteristics as natural ones. We transplanted the soil in a constructed tidal flat to a natural one and vice versa. Parameters monitored after these transplantations were silt content, organic matter, bacterial population and oxidation-reduction potential. Moreover, the relationship among silt content, organic matter and bacterial population was investigated by laboratory column experiment. The silt content, organic matter, bacterial population and vertical profile of oxidation-reduction potential in the soil transplanted from the constructed tidal flat to the natural one changed to similar values to those in the natural one. On the contrary, all the parameters for the soil transplanted from the natural tidal flat to the constructed one changed to similar values as those in the constructed one. The silt contents in thses two transplanted solis were in proportion to the organic carbon contents and bacterial population. Similarly, the bacterial population in laboratory column experiment increased with the increase in silt and organic matter contents. It seemed to be important to select a place to enhance accumulative of silt and/or to maintain the silt content by hydrodynamic control of seawater in order to construct a tidal flat having similar characteristics as natural one.

  • PDF

The Effects of Reaction Conditions and NOM on Persulfate Oxidation of RDX (Persulfate에 의한 RDX 산화시 반응조건과 NOM의 영향)

  • Wu, Dabo;Bae, Bum-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.723-730
    • /
    • 2011
  • In this experiment, persulfate, a strong oxidant for ISCO (In-Situ Chemical Oxidation) was used to degraded RDX in artificial ground water at ambient temperature. Results of RDX degradation by persulfate in a batch reactor showed that the oxidation reaction was pseudo first order with estimated Ea (activation energy) of $1.14{\times}10^2kJ/mol$ and the rate was increased with the increase of reaction temperature. The oxidation of RDX by persulfate increased slightly with the increase of initial solution pH from 4 to 8. The RDX oxidation rate increased 13 times at pH 10 compared with that at pH 4, however, alkaline hydrolysis was found to be the main reaction of RDX degradation rather than oxidation. The study also showed that the oxidation rate of RDX by persulfate was linearly dependent upon the molar ratios of persulfate to RDX from 5 : 1 up to 100 : 1, with a proportion constant of $4{\times}10^{-4}$ ($min^{-1}$/molar ratio) at $70^{\circ}C$. While NOM (Natural Organic Matter) exerted negative effects on the oxidation rate of RDX by persulfate, with a proportion constant of $1.21{\times}10^{-4}$ ($min^{-1}{\cdot}L/mg-NOM$) at $70^{\circ}C$ and persulfate/NOM molar ratio of 10/1. The decrease in RDX oxidation rate was linearly dependent upon the added NOM concentration. However, the estimated activation energy in the presence of 20 mg-NOM/L was within 3.3% error compared to that without NOM, which implies the addition of NOM does not alter intrinsic oxidation reaction.

Photocatalytic Oxidation of Free Cyanide Using UV LED (자외선 LED를 이용한 자유 시안의 광촉매 산화)

  • Kim, Seong Hee;Seol, Jeong Woo;Lee, Woo Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.34-44
    • /
    • 2015
  • This study was initiated to remove free cyanide from wastewater using the process of photocatalytic oxidation. UV lamp has been extensively used as a light source in conventional photocatalytic oxidation, but numerous drawbacks of UV lamp have been raised so far. Thus, this study focused on evaluating the applicability of UV LED as an alternative light source to overcome the drawbacks of UV lamp. Furthermore, the effects of diverse operational parameters on the performance of process were investigated. The results demonstrated the applicability of UV LED as a substitute of UV lamp. Also, the results show that the performance of process was improved by the increase in the number of UV LEDs used. To acquire economic feasibility as well as high efficacy, however, it is required to determine the optimum number of UV LED prior to practical implementation of the process. Among the three types of photocatalysts (anatase, rutile, and Degussa P25) tested, the Degussa P25 showed the greatest performance, and it was proven that the process was not improved as much as the Degussa P25 through simple mixing of anatase and rutile without any pretreatment. In addition, the removal efficiency of free cyanide appeared to be increased with the decrease in the particle size of $TiO_2$ photocatalyst. Besides, the process was enhanced with injection of oxygen which is considered as a major electron acceptor in the photocatalytic oxidation.

Effects of Organic Matter and pH on Chromium Oxidation Potential of Soil

  • Chung, Jong-Bae;Eum, Jin-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.346-351
    • /
    • 2001
  • Oxidation of Cr(III) to Cr(VI) can increase availability and toxicity of chromium. In this study, possible mechanisms by which pH and organic matter can control the chromium oxidation and reduction in soil system were examined using four soils of different pHs and organic matter contents. Reduction of Mn-oxides occurred in the soils of higher organic matter content (4.0%), but Mn-oxide was quite stable during the incubation in the soil of pH 7.0 and 0.5% organic matter content. Manganese oxides can be reductively dissolved at lower pH and higher organic matter conditions. The soil of pH 7.0 and 4.0% organic matter content showed the highest Cr-oxidation potential. Reduction of soluble Cr(VI) was observed in all the soils examined. The most rapid reduction was found in soil of pH 5.5 and 4.0% organic matter content, but the reduction was slow in soil of pH 7.0 and 0.5% organic matter content. Thus, the reductive capacity of organic matter added soils was much higher as compared to other two soils of lower organic matter content. In all the soils examined, the reductive capacity of soluble chromium was much higher than the oxidative capacity. Organic matter was found to be the most important controlling factor in the chromium oxidation and reduction. Reduction of Cr(VI) to Cr(III) could be a potentially useful remediation or detoxification process, and availability and toxicity of chromium in soil would be controlled by controlling organic matter content and pH of the soils.

  • PDF