• Title/Summary/Keyword: natural mineral complex

Search Result 28, Processing Time 0.029 seconds

The Effect of Natural Mineral Complex and Chitosan Supplementation on Egg Production and Characteristics in Laying Hens (사료 내 천연 미네랄과 키토산의 수준별 첨가가 산란계의 산란율 및 계란 품질에 미치는 영향)

  • Yoo, J.S.;Kim, J.D.;Cho, J.H.;Chen, Y.J.;Kim, H.J.;Min, B.J.;Kang, D.K.;Kim, I.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.4
    • /
    • pp.309-316
    • /
    • 2006
  • This study was conducted to investigate the effects of dietary natural mineral liquid complex on egg production and characteristics in laying hens. A total of two hundreds fifty two, 63-weeks-old, Hy-line brown commercial layers were used for 6 weeks. Seven dietary treatments included CON (Control), C1-M0.25 (CON diet+1% chitosan+0.25% natural mineral complex), C1-M0.5 (CON diet+1% chitosan+0.50% natural mineral complex), C2-M0.25 (CON diet+2% chitosan+0.25% natural mineral complex), C2-M0.50 (CON diet+2% chitosan+0.50% natural mineral complex), C3-M0.25 (CON diet+ 3% chitosan+0.25% natural mineral complex) and C3-M0.50 (CON diet+3% chitosan+0.50% natural mineral complex). For overall period, egg production, egg shall breaking strength, haugh unit, K and Fe concentrations of blood and Fe concentration of yolk were improved in additive natural mineral treatments compared to control treatment(P<0.05). K and Fe concentrations of blood and Fe concentration of yolk were increased in added 0.5% mineral treatment compared to added 0.25% mineral treatment(P<0.05). Additive 3% chitosan + 0.5% mineral treatments were improved on egg Production and egg shall breaking strength in laying hens(P<0.05). In conclusion, chitosan and natural mineral complex supplementation in lay hens diet improved egg oduction, egg all strength and mineral concentrations of blood and yolk.

Effect of natural mineral complex on egg quality, egg production and hatchability in laying hens during the summer season

  • Oh, Han Jin;Cho, Jin Ho;Lee, Young;Yu, Sung beom;Lee, Jung Joo;Cho, Seong Koo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.229-237
    • /
    • 2018
  • This study was conducted to investigate the effect of natural mineral complex fed to laying hens during the summer in terms of the egg quality. A total of 480 laying hens (160 leghorns, 160 Korean native chickens and 160 silkies, all 62 weeks old), were used for 4 weeks. The four dietary treatments were as follows: CON) basal diet; MC1) CON + 0.1% natural mineral complex (NMC); NMC3) CON + 0.3% NMC, and NMC5) CON + 0.5% NMC. In terms of egg weight, the NMC3 and NMC5 treatments had significantly higher egg weights than that of the CON (p < 0.001) in all species. Eggshell strength in the NMC3 and NMC5 treatments was significantly higher than that of the CON in the leghorns on 2 week (p < 0.01). In the Korean native chickens, the eggshell strength for the NMC1, NMC3 and NMC5 treatments was significantly higher than that of the CON during all periods. In 4 week, the eggshell strength for the CON and NMC1 treatment was significantly higher in the leghorns (p < 0.001), but the MC treatments had a significantly higher eggshell strength than that of the CON in Korean native chickens. Egg production was significantly improved in all the treatments compared to the NMC3 treatment (p < 0.05), and hatchability was also improved compared to the CON (p < 0.05). In conclusion, supplementation of natural mineral complex in chicken diets influenced the egg quality during the summer season.

The Effect of Natural Mineral Complex Supplementation on Production, Egg Quality and Blood Characteristic in Laying Hens (사료 내 천연 복합 미네랄 제제의 첨가가 산란계의 생산성, 계란 품질 및 혈액 성상에 미치는 영향)

  • Yoo, J.S.;Kim, J.D.;Cho, J.H.;Chen, Y.J.;Kim, H.J.;Kang, D.K.;Min, B.J.;Kim, I.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.3
    • /
    • pp.189-194
    • /
    • 2006
  • This study was conducted to investigate the effects of natural mineral complex supplementation on egg production and characteristic in laying hens. A total of two hundred forty laying hens were randomly allocated into four treatments with ten replications for six weeks. Dietary treatments included 1) CON (control, basal diet) 2) M0.5 (basal diet + 3% chitosan + 0.5% natural mineral complex), 3) M1.0 (basal diet + 3% chitosan + 1.0% natural mineral complek) and 4) M1.5 (basal diet + 3% chitosan + 1.5% natural mineral complex). In the egg production, the M1.5 treatment was significantly higher than other treatments(P<0.05). However, egg weight was significantly higher in M0.5 treatment than CON and M1.0 treatments(P<0.05). Egg shell breaking strength was higher in M1.5 treatment than M0.5 treatment. Egg shell thickness was the highest in M1.5 treatment compared to other treatments(P<0.05). The hens 134 M0.5 diet were improved egg yolk color compared to those fed other diets(P<0.05). The Haugh unit, CON and M1.0 treatments showed significantly different results compared to those of M1.5 treatment(P<0.05). The M1.5 treatment had higher Ca and Fe concentration in blood and higher K concentration in yolk than CON(P<0.05). In conclusion, supplementation of natural mineral complex in laying hen diets influenced on egg production, egg shell qualify and mineral concentration in blood and yolk.

Mineralogical Analysis and Mechano-Chemical Purification of Natural Silica Ore for High Purity Silica Powder

  • Park, Jesik;Lee, Churl Kyoung;Lee, Hyun-Kwon
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.306-310
    • /
    • 2016
  • To produce 4N grade high-purity silica powder from natural ore, the mineralogical characteristics of natural silica ore were investigated and their effects on the purification process were revealed. The Chinese silica mineral ore used was composed of iron and aluminum as main impurities and calcium, magnesium, potassium, sodium, and titanium as trace impurities; these trace impurities generally exist as either single oxides or complex oxides. It was confirmed that liberation and acidic washing of the impurities were highly dependent on the particle size of the ground silica ore and on its mineralogical characteristics such as the distribution and phases of existing impurities. It is suggested that appropriate size reduction of silica ore should be realized for optimized purification according to the origin of the natural silica ore. A single step purification process, the mechano-chemical washing (MCW) process, was proposed and verified in comparison with the conventional multi step washing process.

Mineral Distribution of the Southeastern Yellow Sea and South Sea of Korea using Quantitative XRD Analysis (정량X선회절분석법을 이용한 황해 남동부, 한국남해 및 제주도 남단 표층퇴적물의 광물분포 연구)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Kyung-Hoon;Do, Jin-Young;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • We studied the mineral composition and mineral distribution pattern of 131 surface sediments collected at the cruise in 2000 and 2007 from Southeastern Yellow Sea, South Sea of Korea and Southern part of Jeju Island. Mineral compositions of surface sediments were determined using the quantitative X-ray diffraction analysis. Surface sediments were composed of rock forming minerals (quartz 37.4%, plagioclase 11.7%, alkali feldspar 5.5%, hornblende 3.1%), clay minerals (illite 19.2%, chlorite 4.7%, kaolinite 1.8%) and carbonate minerals (calcite 10.7%, aragonite 3.4%). Distribution of clay minerals is very similar with fine-grained sediments, and especially same as the distribution of HSMD (Hucksan Mudbelt Deposit), SSKMD (South Sea of Korea Mudbelt Deposit) and JJMD (Jeju Mudbelt Deposit). The coarse sediment seemed to be relic sediment during the last glacial maximum and mainly consisted of rock forming minerals. Whereas the fine sediments mainly composed of clay minerals. Based on the clay mineral composition, main ocean current and geographical factor, HSMD and SSKMD might have derived from the rivers around the Korean Peninsula. However, JJMD is complex mudbelt deposit, which formed by Korean rivers and oceanic sediments.

Metamorphism of Anorthositic Rocks with Respect to Amphiboles in Hadong Area (각섬석류를 활용한 하동지역 회장암체의 변성작용에 관한 연구)

  • Kwak, Ji Young;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.221-231
    • /
    • 2015
  • Precambrian Jirisan gneiss complex suffered retrograde metamorphism ranging from granulite facies to the amphibolite facies and/or greenschist facies. Intrusive anorthositic rocks in gneiss complex are influenced by late metamorphism. Mafic mineral in anorthositic rock composed mainly of amphiboles, which can anticipate the information about metamorphic conditions and metamorphic facies. Amphiboles from anorthositic rock show subhedral to anhedral in shape and mostly blueish green and/or green in colour in plane polarized light. Some of brownish amphiboles show zonal texture with brownish to blueish green in color from core to rim. Reaction parts in clinopyroxene which exchange with amphibole. It suggests retrograde metamorphism and/or alteration. Amphiboles composing anorthositic rocks can be classified into two types depending on the size and occurrence of amphibole. The first type is microcrystalline amphibole occurring matrix [Group I: ferrohornblende]. The second type is amphibole with 1 mm or larger in size, which is usually occurred in the boundary between opaque mineral and plagioclase [Group II: ferropargasite]. Electron microscopic analyses base on the $Al^{vi}$ composition in amphiboles suggest that the metamorphic pressure of anorthositic rock was low with 5 kbar or less. Ti compositional range in amphibole and representing hornblende+ plagioclase+garnet+biotite+chlorite mineral assemblage suggest that metamorphic facies of anorthositic rock is in amphibolite facies.

Geochemistry of the Gneisses in the Jangsu Area, Jeonbuk, Korea (전북 장수지역에 분포하는 편마암류의 지구화학적 연구)

  • Son, Jeong-Mo;Shin, In-Hyun;Ahn, Kun-Sang
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.58-71
    • /
    • 2011
  • The precambrian gneisses are widely distributed in the Jangsu area. This study focuses on the metamorphic mineral assemblages and metamorphic P-T conditions of the gneiss. We have analyzed garnet, biotite and plagioclase among the gneiss through the EPMA analysis, and calculated the metamorphic temperature and pressure accordingly. The metamorphic temperature was estimated by the average of values from the garnet and biotite formulas, and the metamorphic pressure by value of the Hoisch(1990) geopressured on garnet-biotite-plagioclase. The mineral sample we examined shows garnet-biotite-plagioclase-quartz composite and garnet-plagioclase-orthoclase-quartz composite. Garnet shows almandine-pyrope solid solution in general, while porphyroblastic gneiss shows almandine-grossluar solid solution. The fact that the abundances, observed by garnet profile, are almost identical in both the central region and the outer egion indicates that the crystal was developed uniformly. There is almost negligible variance in biotite on metamorphic grade, and andesine is observed in plagioclase. The metamorphic temperature and pressure from EPMA analysis and its indications are as follows: the middle-temperature, high-pressure metamorphism ($500-650^{\circ}C$, 6.9-10 kbar) ensued in the beginning, and then was followed by the high-temperature, middle-pressure($600-740^{\circ}C$, 2.7-5.9 kbar) to ($500-540^{\circ}C$, 3.1 kbar) retrograde metamorphism.

A Study for Medical Mineral Reaction Controls on Artificial Body Fluid Composition: Gastric Juice-Cinnabar Reaction and Concentration of Mercury Complex (가상체액에 대한 광물약의 반응특성 모델링 ; 위액-주사 반응과 수은착물의 농도)

  • 박맹언;김선옥
    • Journal of the Mineralogical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • The medical mineral menas a single mineral or a complex of minerals. It is natural material. using the medical action of he major or the minor elements, and traditional medicine stuff which has been used since long time ago. Jusa, cinnabar as the mineral name, is the product of the hydrothermal process. It is used to relax the body and cure high blood pressure, apoplexy and cardiopathy. Jusais the major component of "An shin hwan" and "Woo hwang chung shim hwan" nowadays because it has such an excellent calm effect. In addition, it is used to cure cancers such as esophageal cancer and gastric cancer. Jusa composed of mercuric sulfide causes mercury poisoning such as Minamata disease. It is dealt with mineralogical property and chemical composition medical stuff in Korea and China, as well asmercury poisoning and medical action of Jusa in this study. In order to predct accumulation of the interior of the body of the major and minor elements in Jusa, leaching experiment of Jusa by artificial gastric juice was done as well as thermodynamic reaction modelling to know concentration of each species of body fluid. The minor elements of 24 species such as As, Pb, Cd, a and Fe by leaching reaction of Jusa and artificial gastric juice were leached. We can know the fact that as is less than 1 ppm, Hg is less than 25 ppm and Cd and m are not detected. In addition, mercury exists as species of Hg2+, HgCl+, HgCl2, HgCl3-, HgCl42-, HgClOH, HgS(H2S)2, Hg(HS)3-, HgS22-, HgOH and Hg(OH)2 by reaction modelling between Jusa and artificial gastric juice. The concentration of sulfide complexes is 24.2 ppm and that of others is less than 10 ppm. According to increasing pH, the concentration of HgS(H2S)2, Hg(HS)3+, HgS22- and Hg(OH)2 increases, whereas the concentration of HgCl+, HgCl2, HgCl3- and HgCl42- decreases. Therefore, Jusa is very useful for the development of new medicine because it is possible to predict formation of the body species and species accumulation on mercury known as a toxic element and concentration changes of toxicity and efficiency.city and efficiency.

  • PDF

Occurrence of REE-bearing Allanite with Th-mineral (thorite) in Wolhoengri, Hadong, Korea (하동군 월횡리에서 토륨광물과 수반된 함REE 갈렴석의 산출상태)

  • Choi, Jin Beom;Kwak, Ji Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • Ilmenite mine was developed in the anorthosites which intruded Precambrian Jirisan gneiss complex in Wolheongri, Okjong-myeon, Hadong. Ti-ore bodies are confined to the intercumulated type anorthosites, where REE-bearing allanite occurred as veins. The chemistry of allanites shows relatively low in CaO (11.02~12.81 wt%), but high in ${\Sigma}R_2O_3$ (R = Ce, La, Nd) (17.21~21.58 wt%), respectively. Abnormally high radioactive detection ascribes to the presence of small particles of thorium mineral known as thorite ($ThSiO_4$). Thorite shows 65~72.78 wt% ($ThO_2$) and 5.49~12.78 wt% ($UO_2$) in composition. The radioactive prospecting could be a strong tool to find REE-bearing allanite which is closely associated with Ti-ore deposits.

The Application of Dual Function Organoclay on Remediation of Toxic Metals and Organic Compounds in Soil-Water System (양친매성 유기점토를 이용한 중금속과 유기 오염물질 동시제거 기술)

  • Ok, Yong-Sik;Lim, Soo-Kil;Kim, Jeong-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.177-184
    • /
    • 2003
  • Although clay can sorb significant amounts of inorganic contaminants from soils and wastewater, the hydration of exchangeable cations in clay minerals makes it hydrophilic at the clay mineral surfaces and interlayers. Thus, natural clays are often ineffective in complexing and stabilizing toxic organic contaminants in soils and groundwater environment. But, substituting these hydrated cations with cationic surfactant such as QAC(Quaternary ammonium Compound) can change the natural clay from hydrophilic to hydropobic. Furthermore functionalized organoclay can act as a powerful dual function sorbent for both toxic metals and organic compounds. It also can be used as landfill clay liners, slurry walls, nano-composite materials, petroleum tank farms, waste treatment, and filter systems. To use this modified clay minerals effectively, it is required to understand the fundamental chemistry of organoclay, synthetic procedures, its engineering application, bioavailability of sorbed ion-clay complex, and potential risk of organoclay. In this review, we investigate the use, application and historical background of the organoclay in remediation technology. The state-of-the-art of organoclay research is also discussed. Finally, we suggest some future implications of organoclay in environmental research.