Annual Conference on Human and Language Technology
/
1999.10e
/
pp.156-163
/
1999
최근의 자연어 처리 분야의 연구들에서 광범위하고 완전한 어휘 지식 베이스의 필요성이 입증되었다. 영어권의 경우, 이에 대한 연구가 오래 전부터 있어 왔고, 그 결과로 현재 주로 사용되고 있는 개념체계에는 Roget's Thesaurus와 WordNet 등이 있다. 이러한 개념체계들은 자연어 처리의 여러 응용 분야에서 중요한 역할을 담담하고 있지만, 다른 언어의 경우 널리 사용되고 있는 개념체계가 없는 실정이다. 본 논문에서는 Princeton 대학의 WordNet을 기반으로 한영 사전과 국어 사전을 이용하여 한국어 명사의 개념체계를 자동으로 구축함으로써, 이미 구축되어진 다른 언어의 개념체계를 이용하여 새로운 언어의 개념체계를 자동으로 구축할 수 있음을 보인다. 먼저 한영 사전과 국어 사전으로부터 뽑아낸 한국어 단어 일부의 의미를 다양한 WSD(Word Sense Disambiguation) 방법을 적용시켜 WordNet의 synset에 자동으로 연결시킬 수 있음을 보인다. 그리고 각각의 자동변환으로 나온 결과들에 대해서 적용율과 정확도를 비교하도록 한다.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.377-381
/
1999
담화 분석에서 화자의 의도와 대화의 흐름을 이해하기 위해서 화행 분석이 중요하다. 최근에 대화 말뭉치를 이용하여 화행을 결정하는 방법들이 많이 연구되어 왔다. 발화 특성 정보를 이용한 통계적 화행 분석과 담화 구조를 최대 엔트로피 모델에 적용한 연구가 있었다. 그러나 이러한 연구에서 발화의 어떤 특성 정보가 실제 화행 결정에 중요한 역할을 하는지 알기가 어렵다. 그러나 결정 트리를 이용한 본 연구는 결정트리의 분리자를 통해 어떤 정보들이 화행결정에 영향을 끼치는지 알 수 있다는 장점이 있다. 본 연구는 결정트리를 이용하여 화행을 결정하였으며, 현재 발화의 이전 발화 정보만을 고려한 bigram, 이전 두 발화의 화행을 고려한 trigram, 또한 담화 구조를 고려한 trigram 모델을 비교 분석하였다.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.262-268
/
2000
본 논문에서는 어휘 의미 애매성 해소와 영어 대역어 사전 그리고 외국언어에 존재하는 개념체계를 이용하여 한국어 개념체계를 자동으로 구축하는 방법을 기술한다. 본 논문에서 사용하는 방법은 기존의 개념체계 구축 방법들에 비해 적은 노력과 시간을 필요로 한다. 또한 상기한 자동 구축 방법에서 사용하는 어휘 의미 애매성 해소를 위한 6가지 feature도 함께 설명한다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.496-499
/
2019
스마트폰의 쿼티 자판 소프트 키보드의 버튼과 버튼 사이 좁은 간격으로 인해 사용자가 의도치 않은 간섭 오타가 발생하는 것에 주목하였다. 그리고 오타 교정의 성능은 사용자의 관점에서 얼마나 잘 오타를 교정하느냐도 중요한 부분이지만, 또한 오타가 아닌 어절을 그대로 유지하는 것이 더 중요하게 판단될 수 있다. 왜냐하면 현실적으로 오타인 어절 보다 오타가 아닌 어절이 거의 대부분을 차지하기 때문이다. 따라서 해당 관점에서 교정 방법을 바라보고 연구할 필요가 있다. 이에 맞춰 본 논문에서는 대용량 한국어 말뭉치 데이터를 가지고 확률에 기반한 한국어 간섭 오타 수정 방법에 대해 제안한다. 제안하는 방법은 목표 어절의 좌우 어절 N-gram과 어절 내 좌우 음절 N-gram 정보를 바탕으로 발생할 수 있는 간섭 오타 교정 후보들 중 가운데서 가장 적합한 후보 어절을 선택하는 방법이다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.427-432
/
2020
딥러닝(Deep-learning) 기반의 자연어 이해(Natural Language Understanding) 기술들은 최근에 상당한 성과를 성취했다. 하지만 딥러닝 기반의 자연어 이해 기술들은 내적인 동작들과 결정에 대한 근거를 설명하기 어렵다. 본 논문에서는 벡터를 그래프로 변환함으로써 신경망의 내적인 의미 표현들을 설명할 수 있도록 한다. 먼저 인간과 기계 모두가 이해 가능한 표현방법의 하나로 그래프를 주요 표현방법으로 선택하였다. 또한 그래프의 구성요소인 노드(Node) 및 엣지(Edge)의 결정을 위한 Element-Importance Inverse-Semantic-Importance(EI-ISI) 점수와 Element-Element-Correlation(EEC) 점수를 심층신경망의 훈련방법 중 하나인 드랍아웃(Dropout)을 통해 계산하는 방법을 제안한다. 다양한 실험들을 통해, 본 연구에서 제안한 벡터-그래프(Vector2graph) 변환 프레임워크가 성공적으로 벡터의 의미정보를 유지하면서도, 설명 가능한 그래프를 생성함을 보인다. 더불어, 그래프 기반의 새로운 시각화 방법을 소개한다.
This paper explores the application of matrix factorization, specifically CUR decomposition, in the clustering of Korean language documents by topic. It addresses the unique challenges of Natural Language Processing (NLP) in dealing with the Korean language's distinctive features, such as agglutinative words and morphological ambiguity. The study compares the effectiveness of Latent Semantic Analysis (LSA) using CUR decomposition with the classical Singular Value Decomposition (SVD) method in the context of Korean text. Experiments are conducted using Korean Wikipedia documents and newspaper data, providing insight into the accuracy and efficiency of these techniques. The findings demonstrate the potential of CUR decomposition to improve the accuracy of document clustering in Korean, offering a valuable approach to text mining and information retrieval in agglutinative languages.
Armengol-Estape, Jordi;Soares, Felipe;Marimon, Montserrat;Krallinger, Martin
Genomics & Informatics
/
v.17
no.2
/
pp.15.1-15.7
/
2019
Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step for complex event types such as drug dosage recognition, duration of medical treatments or drug repurposing. Formally, this task is known as named entity recognition (NER), meaning automatically identifying mentions of predefined entities of interest in running text. In the domain of medical texts, for chemical entity recognition (CER), techniques based on hand-crafted rules and graph-based models can provide adequate performance. In the recent years, the field of natural language processing has mainly pivoted to deep learning and state-of-the-art results for most tasks involving natural language are usually obtained with artificial neural networks. Competitive resources for drug name recognition in English medical texts are already available and heavily used, while for other languages such as Spanish these tools, although clearly needed were missing. In this work, we adapt an existing neural NER system, NeuroNER, to the particular domain of Spanish clinical case texts, and extend the neural network to be able to take into account additional features apart from the plain text. NeuroNER can be considered a competitive baseline system for Spanish drug and CER promoted by the Spanish national plan for the advancement of language technologies (Plan TL).
Haein Lee;Hae Sun Jung;Seon Hong Lee;Jang Hyun Kim
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.9
/
pp.2334-2347
/
2023
Metaverse services generate text data, data of ubiquitous computing, in real-time to analyze user emotions. Analysis of user emotions is an important task in metaverse services. This study aims to classify user sentiments using deep learning and pre-trained language models based on the transformer structure. Previous studies collected data from a single platform, whereas the current study incorporated the review data as "Metaverse" keyword from the YouTube and Google Play Store platforms for general utilization. As a result, the Bidirectional Encoder Representations from Transformers (BERT) and Robustly optimized BERT approach (RoBERTa) models using the soft voting mechanism achieved a highest accuracy of 88.57%. In addition, the area under the curve (AUC) score of the ensemble model comprising RoBERTa, BERT, and A Lite BERT (ALBERT) was 0.9458. The results demonstrate that the ensemble combined with the RoBERTa model exhibits good performance. Therefore, the RoBERTa model can be applied on platforms that provide metaverse services. The findings contribute to the advancement of natural language processing techniques in metaverse services, which are increasingly important in digital platforms and virtual environments. Overall, this study provides empirical evidence that sentiment analysis using deep learning and pre-trained language models is a promising approach to improving user experiences in metaverse services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.