• Title/Summary/Keyword: natural fiber composites

Search Result 130, Processing Time 0.024 seconds

Effect of NaOH Treatments on Jute and Coir Fiber PP Composites

  • Hai, Nguyen Minh;Kim, Byung-Sun;Lee, Soo
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.197-208
    • /
    • 2009
  • Changes occurring in jute and coir fiber composites with 2-8% concentration of a NaOH treatment for 24 h were investigated, respectively, for void content, microscopy images, mechanical properties and water absorption. The jute and coir fibers were vacuum dried before molding composite specimens. Mechanical properties indicated good adhesion between natural fibers and PP. Jute fibers, when alkali-treated with 2% concentration for 24 h, showed best improvement in tensile strength by 40% and modulus by 9%, respectively, while coir fibers, when alkali-treated with 6% concentration for 24 h, showed best improvement in tensile strengths by 62% and modulus by 17%, respectively. With 2% concentration of alkali-treatments, the elongation of jute and coir composites reached 8% and 13.5%, respectively. Moisture absorption for jute and coir composites are 50% and 60% lower than untreated fiber composites, respectively.

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.

Effect of Electron Beam Irradiation on the Interfacial and Thermal Properties of Henequen/Phenolic Biocomposites

  • Pang, Yansong;Yoon, Sung Bong;Seo, Jeong Min;Han, Seong Ok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.12-17
    • /
    • 2005
  • Natural fiber/phenolic biocomposites with chopped henequen fibers treated at various levels of electron beam irradiation (EBI) were made by means of a matched-die compression molding method. The interfacial property was explored in terms of interfacial shear strength measured by a single fiber microbonding test. The thermal properties were studied in terms of storage modulus, tan ${\delta}$, thermal expansion and thermal stability measured by dynamic mechanical analysis, thermomechanical analysis and thermogravimetric analysis, respectively. The result showed that the interfacial and thermal properties depend on the treatment level of EBI done to the henequen fiber surfaces. The present result also demonstrates that 10 kGy EBI is most preferable to physically modify the henequen fiber surfaces and then to improve the interfacial property of the biocomposite, supporting earlier results studied with henequen/poly (butylene succinate) and henequen/unsaturated polyester biocomposites.

  • PDF

Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan;Lee, Hyun-Seok;Han, Seong-Ok;Drzal, Lawrence T.
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.315-334
    • /
    • 2007
  • In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

Interfacial and Thermal Characteristics of Natural Fiber Composites Reinforced with Henequen Surface-Treated with EBI

  • Pang Yansong;Han Seong Ok;Cho Donghwan;Drzal Lawrence T.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.88-91
    • /
    • 2004
  • In this study, a number of natural fiber henequen reinforced polymer matrix composites were successfully fabricated by means of a compression molding technique using chopped henequen fibers surface-treated with different electron beam irradiation (EBI) dosages, thermoplastic poly(butylene succinate), thermosetting unsaturated polyester and phenolic resins. Their interfacial and thermal characteristics were studied in terms of interfacial shear strength, fracture surface, dynamic mechanical properties, dimensional stability, and thermal stability using single fiber microbonding test, SEM, DMA, TMA, and TGA. The results show that their interfacial and thermal properties significantly depend on the intensity of EBl treatment on the natural fiber surface.

  • PDF

Interfacial Evaluation of Kenaf and Ramie Fibers/Epoxy Composites using Micromechanical Technique (Micromechanical 시험법을 이용한 Kenaf와 Ramie 섬유강화 에폭시 복합재료의 계면 물성 평가)

  • Son Tran Quang;Park Joung-Man;Hwang Byung-Sun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.92-95
    • /
    • 2004
  • Interfacial shear strength (IFSS) of environmentally- friend natural fiber reinforced polymer composites playa very important role in controlling the overall mechanical properties. In this work the IFSS of Ramie and Kenaf fibers/epoxy systems were evaluated using the combination of micromechanical technique, microdroplet test to find out an optimal condition in accordance with final purpose by comparing to each other. Clamping effect on fiber elongation was determined as well. In addition, the mechanical properties of the natural fibers were investigated using single fiber tensile test and analyzed statistically by both uni- and bimodal Weibull distributions. Microfailure modes of different natural fiber structures were observed using optical microscope.

  • PDF

Effect of Spew fillet on Failure Strength Evaluation in Adhesive Bonded Joints involving Natural Fiber Reinforced Composites (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Kim, Yeon-Jik;Yun, Ho-Cheol;Im, Jae-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.262-264
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked joints such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid fiber composites with a polyester and bamboo natural fiber layer adjacent to the spew fillet of adhesive bonded joints and hybrid stacked joints. The results are presented using tensile-shear strength graph and finite element analysis. The failure mechanisms are discussed in order to explain that spew fillet at the end of the overlap reduces greatly the adhesive shear and effects the tensile-shear strength in hybrid stacked joints.

  • PDF

Influence of Alkali or Silane Treatment of Waste Wool Fiber on the Mechanical Properties and Impact Strength of Waste Wool/Polypropylene Composites (폐양모/폴리프로필렌 복합재료의 기계적 특성 및 충격강도에 미치는 폐양모섬유의 알칼리처리 또는 실란처리 영향)

  • Kim, Kihyun;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.18 no.3
    • /
    • pp.118-126
    • /
    • 2017
  • In a natural fiber-reinforced composite material, many studies have been devoted to improving the interfacial adhesion between natural fiber and polymer matrix and the composite properties through various fiber surface modifications. In the present study, waste wool-reinforced polypropylene matrix composites were fabricated by compression molding and their mechanical and impact properties were characterized. As a result, the tensile and flexural properties and the impact strength of waste wool/polypropylene composites strongly depended on the treatment medium, alkali treatment with sodium hydroxide (NaOH) and silane treatment with 3-glycidylpropylsilane(GPS). The composite with waste wool by silane treatment exhibited higher mechanical properties and impact resistance than that by alkali treatment. The fracture surfaces of the composites support qualitatively the increased properties, showing the improved interfacial bonding between the waste wool and the polypropylene matrix.

Flexural Characteristics of Coir Fiber Reinforced Cementitious Composites

  • Li Zhi-Jian;Wang Li-Jing;Wang Xungai
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.286-294
    • /
    • 2006
  • This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1% NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites' flexural properties were examined. The results showed that the CFRCC samples were 5-12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.

Influence of water saturation on fracture toughness in woven natural fiber reinforced composites

  • Kim, Hyo-Jin;Seo, Do-Won
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.83-94
    • /
    • 2007
  • Woven sisal textile fiber reinforced composites were used to evaluate fracture toughness, tensile and three-point bending. The water absorption testing of all specimens was repeated five times in this study. All specimens were immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surfaces were taken to study the failure mechanism and fiber/matrix interfacial adhesion. It is shown that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples showed poor mechanical properties, such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrated a decrease in inclination with increasing cyclic times of wetting and drying for the epoxy and vinyl-ester.