• 제목/요약/키워드: natural fiber

검색결과 959건 처리시간 0.022초

수평 천연섬유배수재의 공학적 특성 평가를 위한 실험적 연구 (Experimental Study on Characteristics of Natural Fiber Mat)

  • 김주형;조삼덕
    • 한국지반신소재학회논문집
    • /
    • 제4권2호
    • /
    • pp.3-9
    • /
    • 2005
  • 최근 모래가격이 급등하고 수급이 어려워져 비교적 가격이 저렴한 코코넛껍질 압축매트와 황마필터로 구성된 수평 천연섬유배수재가 모래 대체재료로서 각광 받고 있다. 본 연구에서는 수평 천연섬유배수재의 인장강도와 투수특성을 평가하여 수평 배수재로서의 사용성을 평가하였다. 수평 천연섬유배수재의 인장특성을 분석한 결과 코코넛껍질 매트의 매우 낮은 인장강도에도 불구하고 대부분의 인장강도가 황마필터에서 발휘되므로 Christopher와 Holtz(1985)가 제안한 일반적인 토목섬유에 대한 인장강도 기준을 훨씬 상회하는 것으로 나타났다. 또한, 매우 높은 압축하중에서 수평 천연섬유배수재의 투수성을 평가한 결과 일반적인 모래의 투수계수보다 높은 투수성을 나타내는 것으로 평가되었다. 이와 같은 결과를 종합적으로 분석하면, 수평 천연섬유배수재는 기존의 모래재료를 대체할 수 있는 배수재료로 사용이 가능할 것으로 판단된다.

  • PDF

Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가 (Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission)

  • 트란콩손;황병선;박종만
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

Compressive and tensile strength behaviors of sand reinforced with fibers and natural Para rubber

  • Sommart Swasdi;Arsit Iyaruk;Panu Promputtangkoon;Arun, Lukjan
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.361-373
    • /
    • 2023
  • This study aimed to investigate the engineering properties and mechanical behaviors of polymer-fibers treated sand. Para rubber (PR), natural fiber (NF), and geosynthetic fiber (GF) were used to reinforce poorly graded sand. A series of unconfined compressive and splitting tensile strength tests were performed to analyze the engineering behaviors and strength enhancement mechanism. The experiment results indicated that the PR-fibers mixture could firmly enhance the strength properties of sand. The stress-strain characteristics and failure patterns have been changed due to the increase of PR and fibers content. The presence of PR and fibers strengthened the sand and enhanced the stiffness and ductility behavior of the mixture. The stiffness of reinforced sand reaches an optimum state when both NF and GF are 0.5%, while the optimum PR contents are 20% and 22.5% for the mixture with NF and GF, respectively. An addition of PR and fiber into sand contributed to increasing interlocking zone and bonding of PR-sand interfacial.

공중합된 열가소성 수지에 의한 자연섬유 복합재의 기계적 물성에 관한 연구 (Mechanical Properties of Natural Fiber Composites by Co-polymerized Thermoplastics)

  • 이정훈;황병선;변준형;김병선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2005
  • In this study, composites with polypropylene(PP) and Jute fiber were prepared by compression molding technique. Generally, hydrophilic jute fibers do not adhere well to PP, which is hydrophobic. Maleic anhydride grafted polypropylene(MAPP) had been widely used as a coupling agent to improve the bonding between ligno-cellulosic fibers and PP. The coupling agent improved the tensile and flexural properties when the mechanical properties were tested by using a UTM. The mechanical properties of natural fiber composites(NFCs) by modified thermoplastics were higher than those of NFCs by unmodified thermoplastics. Fracture surfaces of the composites and the fiber orientations were investigated by scanning electron microscopy. The mechanical performance of NFCs by modified thermoplastics appeared to be improved by the enhanced interface adhesion between the fiber and the matrix.

  • PDF

Vibration analysis of steel fiber reinforced self-compacting concrete beam on elastic foundation

  • Ozdemir, Mahmut Tunahan;Kobya, Veysel;Yayli, Mustafa Ozgur;Mardani-Aghabaglou, Ali
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.85-97
    • /
    • 2021
  • In this study, the effect of steel fiber utilization, boundary conditions, different beam cross-section, and length parameter are investigated on the free vibration behavior of fiber reinforced self-compacting concrete beam on elastic foundation. In the analysis of the beam model recommended by Euler-Bernoulli, a method utilizing Stokes transformations and Fourier Sine series were used. For this purpose, in addition to the control beam containing no fiber, three SCC beam elements were prepared by utilization of steel fiber as 0.6% by volume. The time-dependent fresh properties and some mechanical properties of self-compacting concrete mixtures were investigated. In the modelled beam, four different beam specimens produced with 0.6% by volume of steel fiber reinforced and pure (containing no fiber) SCC were analyzed depending on different boundary conditions, different beam cross-sections, and lengths. For this aim, the effect of elasticity of the foundation, cross-sectional dimensions, beam length, boundary conditions, and steel fiber on natural frequency and frequency parameters were investigated. As a result, it was observed that there is a noticeable effect of fiber reinforcement on the dynamic behavior of the modelled beam.

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • 제4권1호
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

섬유혼합토의 전단파괴 해석 (Anlaysis on the Shear Failure of Fiber Mixed Soil)

  • 박영곤;장병욱
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.562-568
    • /
    • 1999
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground and agrictural structures. Parameters of the model are aspect ration and volumetric ocntnet of fiber, cohesion and internal friction angle of soil, adhesiion intercept of soil and fiber. It is judged that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by linear types of fiber such as steel bar, steel fiber , natural fiber etc..

  • PDF

섬유혼합토의 전단파괴 해석 (Analysis on the Shear Failure of Fiber Mixed Soil)

  • 박영곤
    • 한국농공학회지
    • /
    • 제42권2호
    • /
    • pp.86-92
    • /
    • 2000
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground. Parameters of the model are aspect ratio and volumetric content of fiber, cohesion and internal friction angle of soil, adhesion intercept and interface friction angle of soil and fiber. It is considered that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by thread types of fiber such as steel bar, steel fiber, natural fiber etc.

  • PDF

Manufacturing Regenerated Woody Dyed Fiber from Waste MDF Using Natural Dyes

  • JU, Seon-Gyeong;ROH, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권2호
    • /
    • pp.154-165
    • /
    • 2020
  • To assign the functionality of the regenerated fiber from waste MDF(wMDF) made of pitch pine, we examined the dyeing characteristics of natural dyes, sappan wood as a polychromatic natural red series, monochromatic gardenia as a yellow series, and indigo blue series. For nonemordanting dye, the colors of regenerated fiber dyed by sappan wood and gardenia were reddish yellow (YR) and yellow (Y) series, respectively, and dyeing conditions were appropriate a 30 ~ 50 g/L of dyeing materials at 60 ℃ for 60minutes of dyeing time. We obtained regenerated woody dyed fibers (Re-WDF), YR to the red (R) series by premordanting with Al and Cu mordant for sappan wood and the purplish red (RP) series by Fe premordanting. In the case of gardenia, only Y series colors were developed in nonemordanting dye or all three mordants. Indigo dye produced Re-WDF with greenish yellow (GY) tone at 1%, green (G) tone at 3%, and blue (B) tone at 5% concentration or more. Re-WDF with indigo showed the best light fastness followed by sappan wood and gardenia. In particular, the light fastness of Re-WDF with gardenia was very poor. The light fastness was somewhat improved by premordanting(Fe>Cu>Al) both sappan wood and gardenia dyes.