• Title/Summary/Keyword: natural emission

Search Result 638, Processing Time 0.024 seconds

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

A Study on Weld Pool Oscillation for Pool Geometry Measurement (완전용입 풀의 진동을 이용한 형상측정에 관한 연구)

  • 유중돈
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.62-73
    • /
    • 1993
  • Weld pool oscillation for the full-penetration GTA welding process was investigated for its possible application to weld penetration control through theoretical modeling and experiment. Energy method was used to estimate the natural frequency of the molten pool having the physically-acceptable weld geometry and oscillation modes. An unique experimental system was built which had the data acquisiton and video capabilities so that the pool oscillation signals and molten pool surfaces could be monitored continuously. Pool oscillation was detected through arc voltage and arc light emission simultaneously. The signal from arc light emission showed good coherence with that from arc voltage, and arc light generated the higher quality signal. The molten pool was found to oscillate in different oscillation modes based on the travel speed and weld geometry. The natural frequency estimated from the theoretical model agreed reasonably well with the experimental results.

  • PDF

Effects of Organic Farming on Greenhouse Gas Emission Reduction (유기농업의 온실가스 감축효과)

  • Kim, Chang Gil;Jeong, Hak Kyun;Kim, Yong Gyu
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.335-339
    • /
    • 2016
  • The purpose of this study is to analyze effects of greenhouse gas reduction in organic agriculture. To accomplish the objective of the study, a field survey was conducted. Based on the field survey results, LCA method was used to estimate the greenhouse gas emission. The farmer survey and LCA estimation data were provided by The Foundation of Agricultural Technology Commercialization and Transfer. The GHG estimation results showed that GHG emission of organic farming is less by 10.6~89.3% when compared with the conventional farming. In addition, the economic value of greenhouse gas reduction in organic farming amounts to 1,097 million won. Based on major findings, in response to national greenhouse gas reduction target, it is needed to expand organic farming, supporting organic farmers' income.

Effect of Reduced Valve Overlap on Emission Characteristics of Hydrogen-Compressed Natural Gas Engine (수소-천연가스엔진에서 밸브오버랩 감소가 배기특성에 미치는 영향)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In order to meet the current emission regulations (EURO-6), it is necessary to significantly reduce $CH_4$ and $NO_X$ emissions. This study investigated the effect of a reduction in the valve overlap on the combustion and emission characteristics of a hydrogen-compressed natural gas engine under a part-load operating condition. The combustion and emission characteristics were analyzed for each fuel using the original camshaft and an altered camshaft with reduced valve overlap. The results showed that the thermal efficiency was decreased and the fuel flow was increased when using the altered camshaft. The $CO_2$ and $CH_4$ emissions were increased as a result of the reduced thermal efficiency. Under lean operating conditions, the $NO_X$ emission was decreased compared with one of the conventional camshaft. Thus, under the same fuels and operating conditions, it had a harmful influence on the emission characteristics and thermal efficiency.

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Combustion and Emission Characteristics in CNG Engine with SCV (SCV를 장착한 CNG 엔진의 연소 및 배출가스 특성)

  • 김진영;박원옥;공태원;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. CNG has a lot of merits except lower burning speed has a slow disadvantage. One way to overcome the disadvantage is to raise a turbulence intensity. We give various intake for changing turbulence intensity in the cylinder by three kinds of swirl control valve with a way to raise a turbulence intensity. In the present study, a $1.8\ell$ conventional gasoline engine is modified to use a CNG as a fuel instead of gasoline. We try to virify combustion and emission characteristics in each engine parameters. Parameters of experimentation are equivalence ratio, spark timing and intake flow change. The results of this study are as swirl flows. In the case of adding swirl flow, burning speed and torque are increased. But NOx and THC concentration are increased a little respectively.

A Comparative Study on the Performance and Emission Analysis of a Dual Fuelled Diesel Engine with Karanja Biodiesel and Natural Gas

  • Singh, Ashish Kumar;Kumar, Naveen;Amardeep, Amardeep;Kumar, Parvesh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • In the present study, a single cylinder four stroke dual fuel diesel engine was tested to investigate the performance and emission characteristics of various test fuels. The engine was tested in dual fuel mode using diesel and Karanja biodiesel blends as pilot fuel along with Natural gas as primary fuel with a constant gas flow rate under different loading conditions. From the experimentation it was found that smoke opacity and oxides of nitrogen (NOx) are at low level for all the prepared test fuels in dual fuel mode but the emissions of carbon monoxide (CO), carbon dioxide ($CO_2$) and hydrocarbon (HC) were found higher. In comparison to diesel fuel, by increasing the blend percentage different emission parameters are found to be reduced. At different loading conditions all the test fuels show poor performance in dual fuel mode of operation when compared with single mode of operation with diesel and biodiesel. With increase in gas flow rates, except (NOx) and smoke emissions, the other emission parameters like CO, HC and $CO_2$ values increased for all test fuels. Again, all blended fuels showed lower performance compared to diesel. The maximum pilot fuel savings for diesel was found decreasing with the increase in karanja biodiesel. From the present work it may be concluded that Karanja biodiesel with Natural gas in dual mode can be can used as promising alternative for diesel with some required engine modifications and further research must be carried out to minimize the emissions of CO, HC and $CO_2$.

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF

A Comparison Study on Isoprene Emission Rates from Oak Trees in Summer (여름철 참나무속의 이소프렌 배출속도 비교에 관한 연구)

  • 김조천;김기준;홍지형;선우영;임수길
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.111-118
    • /
    • 2004
  • In order to compare the NVOC (Natural Volatile Organic Compound) emission rates from oak trees, the emission rates of isoprene were quantitatively measured in situ based on tree species and region. As a result, the emission rates from Quercus serrata T. were found to be 1000 times greate. than those from Quercus acutissima C. However, the emission rates at the Chili and Gumsung mountain sites did not show any significant differences in summer. Cuvette tests using four different oak species also supported that there was a tremendous difference in emission rates between Quercus serrata T. and Quercus acutissima C. It was found that the emission rates from the trees were highest on the order of Quercus serrata T., Quercus aliena B., Quercus acutissima C. and Quercus variabilis B.

Emission Characteristics of HCNG Engine with Compression Ratio Change (압축비 변화에 따른 HCNG 엔진의 배기 특성)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.106-112
    • /
    • 2013
  • Compression ratio is an important factor affecting engine performance and emission characteristics since thermal efficiency of spark ignition engine can be theoretically improved by increasing compression ratio. In order to evaluate the effect of compression ratio change in HCNG engine, natural gas engine was employed using HCNG30 (CNG 70 vol%, hydrogen 30 vol%). Combustion and emission characteristics of CNG and HCNG fuel was analyzed with respect to the change of compression ratio at each operating condition. The results showed that thermal efficiency improved and $CH_4$, $CO_2$ emission decreased with the increase in compression ratio while $NO_x$ emissions were decreased at a certain excess air ratio condition. Higher thermal efficiency and further reduction of exhaust emissions can be achieved by the increase of compression ratio and the retard of spark timing.