• Title/Summary/Keyword: natural ecosystems

Search Result 367, Processing Time 0.028 seconds

A Six-Layer SVAT Model for Energy and Mass Transfer and Its Application to a Spruce(Picea abies [L].Karst) Forest in Central Germany (독일가문비나무(Picea abies [L].Karst)림(林)에서의 Energy와 물질순환(物質循環)에 대(對)한 SLODSVAT(Six-Layer One-Dimensional Soil-Vegetation-Atmosphere-Transfer) 모델과 그 적용(適用))

  • Oltchev, A.;Constantin, J.;Gravenhorst, G.;Ibrom, A.;Joo, Yeong-Teuk;Kim, Young-Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.210-224
    • /
    • 1996
  • The SLODSVAT consists of interrelated submodels that simulate : the transfer of radiation, water vapour, sensible heat, carbon dioxide and momentum in two canopy layers determined by environmental conditions and ecophysiological properties of the vegetation ; uptake and storage of water in the "root-stem-leaf" system of plants ; interception of rainfall by the canopy layers and infiltration and storage of rain water in the four soil layers. A comparison of the results of modeling experiments and field micro-climatic observations in a spruce forest(Picea abies [L].Karst) in the Soiling hills(Germany) shows, that the SLODSVAT can describe and simulate the short-term(diurnal) as well as the long-term(seasonal) variability of water vapour and sensible heat fluxes adequately to natural processes under different environmental conditions. It proves that it is possible to estimate and predict the transpiration and evapotranspiration rates for spruce forest ecosystems on the patch and landscape scales for one vegetation period, if certain meteorological, botanical and hydrological information for the structure of the atmospheric boundary layer, the canopy and the soil are available.

  • PDF

The Application of Island Biogeography and Habitat Fragmentation Theory to the Conservation of Protected Areas in Korea (우리나라 보호지역의 보존에 대한 도서생물지리학과 서식처 분획화 이론의 적용)

  • 김용식;마이클모운더
    • Korean Journal of Environment and Ecology
    • /
    • v.6 no.1
    • /
    • pp.12-24
    • /
    • 1992
  • The application of island biogepgraphy and habitat fragmentation theory to protected area management in Korea is discussed. The accelerating destruction and degradation of natural habitats, with the associated erosion of biodiversity, demands and urgent response and a critical review of attitudes to protected area management. The flora of Korea will continue to change in both distribution and status in response to these man induced changes. The conservation and management of ecosystems, because of the variety of threats and the varying levels of biodiversity to be conserved, requires an integrated approach. Such an approach assesses the variety of threats, prevalent and potential, and responds with a strategy combining habitat, species and population management. The application of island biogeography, habitat fragmentation and edge effects theory to conservation strategies in Korea will assist in the understanding of the dynamic relationships between the isolation. degradation and fragmentation of surviving habitat patches. The application of such approaches is discussed with recommendations made for the adoption of an increasingly scientific approach to plant conservation based upon a knowledge of the conservation status and distribution characteristics of the Korean flora. Such data combined with demographic studies on topics such as Minimum Viable Population Size will allow an integrated approach to plant and habitat conservation to progress.

  • PDF

Characteristics of Vegetation Structure in Chamaecyparis Obtusa Stands (편백림의 식생구조 특성 분석)

  • Park, Seok-Gon;Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.907-916
    • /
    • 2015
  • The purpose of this study was to identify characteristics of vegetation structure, vegetation succession, and species diversity of artificially planted Chamaecyparis obtusa (CO) stands. The study was carried out by performing vegetation survey for eight CO stands located in Jeollanam-do Province, Korea. Analysis on vegetation classification and ordinations of the stands was conducted using the data from the vegetation survey, and as a result, the stands were classified into five types of communities. Community I showed a considerably lower index of species diversity when compared to other communities because the canopy of the dominant CO was so highly dense that the low-height vegetation was not able to develop or the low-height vegetation almost disappeared due to elimination of weed trees. Meanwhile, the Community II - IV had relatively higher indices of species diversity because various native tree species mixed with the low-height vegetation and competed with each other in the understory and shrub layers to some degree of stability or in their early stage of vegetation development. Community V, lastly, showed higher use intensity as a recreational forest, thus developing simpler vegetation structure on account of artificial intervention. There was positive correlation between photosynthetically active radiation entering the forest floor, number of observed species and index of species diversity. Such characteristics of vegetation structure in CO stands are closely associated with forest management and prescription for planting reforestation, thinning, and brush cutting in the past. There was a slight difference in vegetation structure and species diversity by communities, based on rotation time of the vegetational succession, process of disturbance frequency and disturbance, development, and maturity by planting CO stands. However, when compared to natural forests, the CO stands showed simpler vegetation structure. Because artificial forests are vulnerable in ecosystem service with lower species diversity, a drive for ecological management is needed for such forests to change into healthy ecosystems that can display functions of public benefit.

Aboveground and Soil Carbon Storages in Quercus mongolica and Quercus variabilis Natural Forest Ecosystems in Chungju (충주지역(忠州地域)의 신갈나무와 굴참나무 천연림(天然林) 생태계(生態系)의 지상부(地上部) 및 토양(土壤) 중(中) 탄소고정(炭素固定)에 관(關)한 연구(硏究))

  • Park, Gwan-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.93-100
    • /
    • 1999
  • This study has been carried out to estimate aboveground and soil carbon contents in an average 39-year-old Quercus mongolica and 40-year-old Quercus variabilis stands in Chungju, Chungbuk. Ten sample trees were cut in each forest and soil samples were collected. Aboveground carbon content was estimated by the equation model $Wt=aD^b$ where Wt is oven-dry weight in kg and D is DBH in cm. Total aboveground carbon content was 48.85tonC/ha in Quercus mongolica stand and 57.49tonC/ha in Quercus variabilis stand. The proportion of each tree component to total aboveground carbon content was high in order of bolewood, branches, bolebark, and leaves in the two forests. Aboveground net primary production was estimated at 5.88tonC/ha in Quercus mongolica stand and 5.12tonC/ha in Quercus variabilis stand. Soil carbon content was 67.0tonC/ha in Quercus mongolica stand, 67.8tonC/ha in Quercus variabilis stand, and 54.7tonC/ha in Pinus densiflora stand. There was no significant difference in soil carbon content among the three forests.

  • PDF

Effects of Elevated $CO_2$ Concentration and Temperature on Growth Response of Quercus acutissima and Q. variabilis (지구온난화에 따른 상수리나무와 굴참나무의 생육반응에 관한 연구)

  • Jeong, Jung-Kyu;Kim, Hae-Ran;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.6
    • /
    • pp.648-656
    • /
    • 2010
  • Global warming brings changes of natural ecosystems and affects on the plant growth response. Quercus acutissima and Q. variabilis are taxonomically similar and dominant native species in deciduous forests in South Korea. In order to understand the growth response of Q. acutissima and Q. variabilis to global warming condition, we cultivated the seedling of the two oak species in ambient condition(control) and treatment with elevated $CO_2$(700~800ppm) and increased air temperature(approximately $3^{\circ}C$ above than control). Then we measured the growth characteristic among them and analyzed the relationship between two species using PCA ordination. Stem length and total plant weight of Q. acutissima were significantly affected by elevated $CO_2$ concentration and increased air temperature. Stem diameter and weight of Q. variabilis were significantly affected by elevated $CO_2$ concentration and increased air temperature(p<0.05). The variation characteristics of Q. acutissima were changed more than Q. variabilis by elevated $CO_2$ concentration and increased air temperature. These result suggested that Q. acutissima was more sensitive to global warming situation than Q. variabilis in central region of Korea. PCA ordination showed that two species were arranged by two distinct groups based on 10 characters by elevated $CO_2$ and increased air temperature.

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

Impact Assessment of Climate Change by Using Cloud Computing (클라우드 컴퓨팅을 이용한 기후변화 영향평가)

  • Kim, Kwang-S.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.101-108
    • /
    • 2011
  • Climate change could have a pronounced impact on natural and agricultural ecosystems. To assess the impact of climate change, projected climate data have been used as inputs to models. Because such studies are conducted occasionally, it would be useful to employ Cloud computing, which provides multiple instances of operating systems in a virtual environment to do processing on demand without building or maintaining physical computing resources. Furthermore, it would be advantageous to use open source geospatial applications in order to avoid the limitations of proprietary software when Cloud computing is used. As a pilot study, Amazon Web Service ? Elastic Compute Cloud (EC2) was used to calculate the number of days with rain in a given month. Daily sets of climate projection data, which were about 70 gigabytes in total, were processed using virtual machines with a customized database transaction application. The application was linked against open source libraries for the climate data and database access. In this approach, it took about 32 hours to process 17 billion rows of record in order to calculate the rain day on a global scale over the next 100 years using ten clients and one server instances. Here I demonstrate that Cloud computing could provide the high level of performance for impact assessment studies of climate change that require considerable amount of data.

Process Networks of Ecohydrological Systems in a Temperate Deciduous Forest: A Complex Systems Perspective (온대활엽수림 생태수문계의 과정망: 복잡계 관점)

  • Yun, Juyeol;Kim, Sehee;Kang, Minseok;Cho, Chun-Ho;Chun, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.157-168
    • /
    • 2014
  • From a complex systems perspective, ecohydrological systems in forests may be characterized with (1) large networks of components which give rise to complex collective behaviors, (2) sophisticated information processing, and (3) adaptation through self-organization and learning processes. In order to demonstrate such characteristics, we applied the recently proposed 'process networks' approach to a temperate deciduous forest in Gwangneung National Arboretum in Korea. The process network analysis clearly delineated the forest ecohydrological systems as the hierarchical networks of information flows and feedback loops with various time scales among different variables. Several subsystems were identified such as synoptic subsystem (SS), atmospheric boundary layer subsystem (ABLS), biophysical subsystem (BPS), and biophysicochemical subsystem (BPCS). These subsystems were assembled/disassembled through the couplings/decouplings of feedback loops to form/deform newly aggregated subsystems (e.g., regional subsystem) - an evidence for self-organizing processes of a complex system. Our results imply that, despite natural and human disturbances, ecosystems grow and develop through self-organization while maintaining dynamic equilibrium, thereby continuously adapting to environmental changes. Ecosystem integrity is preserved when the system's self-organizing processes are preserved, something that happens naturally if we maintain the context for self-organization. From this perspective, the process networks approach makes sense.

Edge effects confirmed at the clear-cut area of Korean red pine forest in Uljin, eastern Korea

  • Jung, Song Hie;Lim, Chi Hong;Kim, A Reum;Woo, Dong Min;Kwon, Hye Jin;Cho, Yong Chan;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.10
    • /
    • pp.290-301
    • /
    • 2017
  • Background: Forest edges create distinctive ecological space as adjacent constituents, which distinguish between different ecosystems or land use types. These edges are made by anthropogenic or natural disturbance and affects both abiotic and biotic factors gradually. This study was carried out to assess edge effects on disturbed landscape at the pine-dominated clear-cut area in a genetic resources reserve in Uljin-gun, eastern Korea. This study aims to estimate the distance of edge influence by analyzing changes of abiotic and biotic factors along the distance from forest edge. Further, we recommend forest management strategy for sustaining healthy forest landscapes by reducing effects of deforestation. Results: Distance of edge effect based on the abiotic factors varied from 8.2 to 33.0 m. The distances were the longest in $Mg^{2+}$ content and total nitrogen, $K^+$, $Ca^{2+}$ contents, canopy openness, light intensity, air humidity, $Na^+$ content, and soil temperature followed. The result based on biotic factors varied from 6.8 to 29.5 m, coverage of tree species in the herb layer showed the longest distance and coverage of shrub plant in the herb layer, evenness, species diversity, total coverage of herb layer, and species richness followed. As the result of calculation of edge effect by synthesizing 26 factors measured in this study, the effect was shown from 11.0 m of the forest interior to 22.4 m of the open space. In the result of stand ordination, Rhododendron mucronulatum, R. schlippenbachii, and Fraxinus sieboldiana dominated arrangement of forest interior sites and Quercus mongolica, Vitis amurensis, and Rubus crataegifolius dominated spatial distribution of the open area plots. Conclusions: Forest interior habitat lies within the influence of both abiotic and biotic edge effects. Therefore, we need a forest management strategy to sustain the stability of the plant and further animal communities that depend on its stable conditions. For protecting forest interior, we recommend selective logging as a harvesting method for minimizing edge effects by anthropogenic disturbance. In fact, it was known that selective logging contributes to control light availability and wind regime, which are key factors affecting microclimate. In addition, ecological restoration applying protective planting for the remaining forest in the clear-cut area could contribute to prevent continuous disturbance in forest interior.

Risk Assessment Tools for Invasive Alien Species in Japan and Europe (일본과 유럽의 침입외래생물 생태계위해성평가 기법)

  • Kil, Jihyon;Mun, Saeromi;Kim, Chang-Gi
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.191-197
    • /
    • 2015
  • Invasive alien species are considered to be one of the main factors that cause biodiversity loss. Establishment of management strategies through continuous monitoring and risk assessment is a key element for invasive alien species management policy. In the present study, we introduce examples of ecological risk assessment tools developed in Japan, Germany-Austria and Belgium. Invasive alien species have been designated in Japan based on the assessment of risks to ecosystems, human health and primary industry. German-Austrian Black List Information System categorized alien species into Black List, White List and Grey List according to their risks to biodiversity. In the Harmonia Information System developed in Belgium, invasiveness, adverse impacts on native species and ecosystem functions and invasion stages were assessed and alien species were categorized into Black List, Watch List and Alert List. These international risk assessment tools may be helpful to improve our national risk assessment protocol for the prioritization of invasive alien species management.