• Title/Summary/Keyword: natural durability

Search Result 381, Processing Time 0.023 seconds

Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis (차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측)

  • Kim, Byeong-Sam;Kang, Ki-Jun;Park, Kyoung-Woo;Noh, Kwang-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

A Study on Dynamic Behaviors of Steel Plate Girder bridge with Applying External Post-Tensioning Method (외부 후긴장 공법 적용에 따른 무도상 판형교의 동적거동 분석)

  • Choi, Dong-Ho;Choi, Jung-Youl;Choi, Jun-Hyeok;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.160-168
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of external post-tensioning method far steel plate girder bridge. It analyzed the mechanical behaviors of steel plate girder bridge with applying external post-tensioning on the finite element analysis, field test and laboratory test fur the lateral dynamic characteristics. As a result, the reinforcement of steel plate girder bridge the external post-tensioning method are obviously effective for the lateral dynamic response which is non-reinforced. The analytical and experimental study are carried out to investigate the post-tension force decrease lateral acceleration and deflection on steel plate girder bridge for serviceability. And the external post-tensioning method reduce dynamic maximum displacement(about $10{\sim}24%$), the increase of dynamic safety is predicted by adopting external post-tensioning method. From the dynamic test results of the servicing steel plate girder bridge, it is investigated that the change degree of natural frequency is very low with applying the external post-tensioning method The servicing steel plate girder bridge with external post-tensioning has need of the reasonable reinforcement measures which could be reducing the effect of lateral dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

Structural and Parametric Analysis for a Motorcycle Rear Frame using Co-rotational Shell Elements (Co-rotational Shell 요소를 이용한 모터사이클 후방프레임 구조 해석 및 설계변수해석)

  • Ryeom, Jewan;Kang, Seung-Hoon;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.209-216
    • /
    • 2020
  • In this paper, parametric structural analysis is presented utilizing the co-rotational(CR) shell analysis utilizing EDISON. CR shell analysis shows faster convergence than the commercial software, NASTRAN, does. The 1st natural frequency of the rear frame is obtained, which is close to that of the engine during high speed cruise. Three cases under two design variables are presented and analyzed. Gusset is shown to be more effective among those which feature the same weight change. The results presented in this paper will be applicable for further researches to improve the durability of a motorcycle rear frame.

On Probability Distribution of Chloride Diffusion Coefficient for Recycled Aggregate Concrete

  • Ying, Jingwei;Xiao, Jianzhuang;Meng, Qiujiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • In predicating the probability distribution of chloride diffusion coefficient of recycled aggregate concrete ($D_{RAC}$), the morphological characteristics of three phases, i.e., the old attached mortar, the natural aggregate and the new mortar, should all be taken into account. The present paper attempts to develop a probability density evolution method (PDEM) to achieve this. After verifying the derived PDEM results with experimental results, the effects of old attached mortar to the $D_{RAC}$ are examined in a quantitative manner. It is found that (1) the variation of the attached mortar content is much sensitive to $D_{RAC}$; (2) given the probability distribution of the content and chloride diffusion coefficient of old mortar, the probability distribution of DRAC can be analysed based on the PDEM; and (3) the critical chloride diffusion coefficient at a certain assurance rate can be obtained by the PDEM. The analysis results of this investigation will be valuable to the durability design for RAC.

Absorption Characteristics of Perforated Environment Friendly Sound Absorbing Board using Hwangto (황토를 이용한 친환경 유공 흡음보드의 흡음특성)

  • Kim, Sun-Woo;Park, Hyeon Ku
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.3-8
    • /
    • 2011
  • Sound absorbing materials used for lightweight panels and interior material are mainly made of fibroid material such as glass wool or rock wool. However these fiber type sound absorbing materials have some problems such that sound absorption could be decreased as time goes by because of durability. In addition, dust scattering from fiber type material can cause another problem in health. In this point of view, this study aims to develop environment friendly sound absorbing material using Hwangto(so called loess or yellow soil), a traditional housing material. Hwangto is natural housing material in Korea and generally known for improving indoor air quality. Hwangto panel is made to construct on the floor, wall and ceiling, and expected that there is not enough absorption. Present study tried to develop environment friendly sound absorbing material that has high sound absorption performance with good environment performance in terms of air quality. Pore rate was designed to maximize the absorption in the specific frequency bands, and two kinds of backing space were applied in order to see the effect of backing space. As a result peak frequency that has maximum absorption is going high as the pore rate is increased. The backing space provides more absorption and makes the peak frequency down to low.

Performance of steel beams strengthened with pultruded CFRP plate under various exposures

  • Gholami, M.;Sam, A.R. Mohd;Marsono, A.K.;Tahir, M.M.;Faridmehr, I.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.999-1022
    • /
    • 2016
  • The use of Carbon Fiber Reinforced Polymer (CFRP) to strengthen steel structures has attracted the attention of researchers greatly. Previous studies demonstrated bonding of CFRP plates to the steel sections has been a successful method to increase the mechanical properties. However, the main limitation to popular use of steel/CFRP strengthening system is the concern on durability of bonding between steel and CFRP in various environmental conditions. The paper evaluates the performance of I-section steel beams strengthened with pultruded CFRP plate on the bottom flange after exposure to diverse conditions including natural tropical climate, wet/dry cycles, plain water, salt water and acidic solution. Four-point bending tests were performed at specific intervals and the mechanical properties were compared to the control beam. Besides, the ductility of the strengthened beams and distribution of shear stress in adhesive layer were investigated thoroughly. The study found the adhesive layer was the critical part and the performance of the system related directly to its behavior. The highest strength degradation was observed for the beams immersed in salt water around 18% after 8 months exposure. Besides, the ductility of all strengthened beams increased after exposure. A theoretical procedure was employed to model the degradation of epoxy adhesive.

Effects of Bearing Arrangement on the Dynamic Characteristics of High-speed Spindle (베어링 배열방식이 고속 스핀들의 동특성에 미치는 영향)

  • Hong, Seong-Wook;Choi, Chun-Seok;Lee, Chan-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.854-863
    • /
    • 2013
  • High-speed spindle systems typically employ angular contact ball bearings, which can resist both axial and radial loading, and exhibit high precision and durability. We investigated the effects of the arrangement of the angular contact ball bearings on the dynamics of high-speed spindle systems. The spindle dynamics were studied with a number of spindle-bearing models, and the location of the bearings was varied, along with the rotational speed and the preload. A finite element spindle model and a bearing model were used, and simulated data showed that the bearing arrangement significantly affected the spindle dynamics. Furthermore, the main effects were due to the cross coupling terms between the transverse and rotational motions of the ball bearings. The coupling stiffness terms were found to influence the spindle dynamics, depending on the mode shapes. An extensive discussion is provided on the effects of the bearing arrangement on the dynamics of the spindle.

Rehabilitation of the Worn Dentition (심하게 마모된 치열의 전악 수복에 대한 임상적 고찰)

  • Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.455-462
    • /
    • 2010
  • Patients often seek rehabilitative treatment for severely worn dentition. The etiology of noncarious tooth wear due to attrition, abrasion, and erosion is multifactorial. To treat the worn dentition, it is important to identify and eliminate and/or control the factors that contribute to excessive wear. Many situations requiring complete mouth rehabilitation present with the challenge of a lack of restorative space. To establish a correct occlusal plane and space for prostheses, it is necessary to increase vertical dimension. This may require an increase in occlusal vertical dimension. Also clinicians should be able to choose the appropriate restorative materials to achieve excellence in natural esthetics as well as proper biomechanics and durability. This article presents a method for altering occlusal vertical dimension to restore dentitions with limited restorative space due to loss of tooth structure.

Interaction assessment and optimal design of composite action of plastered typha strawbale

  • Olatokunbo, Ofuyatan;Adeola, Adedeji;Maxwell, Omeje;Simon, Olawale
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.221-231
    • /
    • 2017
  • The concept design of the typha strawbale masonry came up as a result of the urgent demand for a means of constructing sustainable buildings, both in rural and urban settlement, not only suitable for dwellers but for keeping farm products by structures that will respond to the environmental eco-system, coupled with the fact that such structures are also affordable, durable and easy to maintain during their service period. The effects of contact between plaster and the stacked strawbale of a masonry needs to be established and design optimization for durability and stability of the masonry be obtained. The assessment will involve the application of plaster materials (cement and natural earth) to the wall specimen panels. Past works have shown that plastered strawbale walls have adequate resistance against the appropriate vertical loads, and further showed that the earth plaster can bear higher stress than the cement plastered straw bale. There is the implication that the collapse or response of the earth-strawbale wall is significantly higher compared to that of cement-strawbale from other straw-based masonries. Therefore the allowable stresses of plastered typha strawbale shall be predicted for their optimum values using SAP2000. The stress stability of each masonry is obtained by analytical model using the best fit variables for the wall height and thickness.

The Actual Conditions, Problems and Design Preferences of Dementia Inpatient Clothing (치매환자복의 실태와 문제점 및 디자인 선호도 분석)

  • Ryou, Eun-Jeong;Park, Hye-Won
    • Fashion & Textile Research Journal
    • /
    • v.8 no.6
    • /
    • pp.618-626
    • /
    • 2006
  • This research explored the actual conditions, problems and design preferences of dementia inpatient clothing. Data were collected by surveying 21 dementia hospitals and nursing care facilities and 87 caregivers and nurses of dementia hospitals. The collected data were analysed through frequency analysis, descriptive analysis and factor analysis. The results were as follows, First, the inpatient clothes of dementia hospitals were two-piece styles, the shirts of front opening with buttons and pants of no opening with elastic band. Those of dementia care facilities were two piece styles of shirts and pants, training suits or private plain clothes not uniform. Severe dementia inpatient dressed uniforms of the jump suits or two piece styles in some dementia care facilities. Second, the problems of dementia inpatient clothing were composed of suitability of raw and subsidiary clothing material, diversity of design and size, durability and form stability of clothes and elastic bands. Third, the design elements similar to those of existing inpatient clothing were preferred with regard to improving dementia inpatient clothing. That is, the design preferences of shirts showed front opening style with buttons, round neckline and a three-quarter-length sleeves. Those of pants came out no opening style with elastic band and full length. Also, pink color and natural patterns were preferred, and the private plain clothing of inpatient and fusion Han-bok style were somewhat preferred.