• Title/Summary/Keyword: natural durability

Search Result 379, Processing Time 0.023 seconds

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

Influence of the Type of Fine Aggregate on Drying Shrinkage and Durability for Concrete (잔골재 종류가 콘크리트의 건조수축과 내구성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.249-255
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates we utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the shrinkage, durability and watertightness of concrete. Results revealed that drying shrinkage increases, and durability and watertightness degrades for concrete using crushed sand than natural fine aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the quality of concrete. In addition, appropriate adjustment of the grain shape and grade during the blending of crushed sand exhibiting bad grain shape and grade with natural aggregates appeared to enhance the shrinkage and durability of concrete.

A Study on the Performance Standards for a Natural Type Landscaping Rocks by Utilizing GFRC(Glass Fiber Reinforced Concrete) (유리섬유강화콘크리트를 이용한 자연형 경관석의 성능기준 연구)

  • Yoon, Bok-Mo;Koo, Bon-Hak
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.33-42
    • /
    • 2012
  • This study aims to establish the performance standard for natural type landscape stone GFRC. The required performance such as material performance, structural safety performance, durability performance, and landscape performance were selected through an examination of domestic and overseas performance related references and examples, and through the questionnaires obtained from 40 experts, and the verified items and performance standards were proposed. Among the required performances, the material performance(glass fiber content, air-dried gravity), structural safety performance(flexural strength, compressive strength), durability performance(crack, corrosion resistance), and landscape performance(texture, efflorescence) were selected through the questionnaires obtained from the experts. In the case of material performance and structural safety performance with the corresponding standards that existed, final performance evaluation standard was proposed by conducting a test and comparing it with the existing standard sample, and in the case of durability performance and landscape performance on which standard does not existed, they were verified by measuring directly through field examination of formative landscape items such as artificial waterfall etc. In this study, performance standard for the material on natural type landscaping rocks GFRC and items which can be evaluated after construction such as material performance, structural safety performance, durability performance, landscape performance, and so forth were proposed, however, follow up study for pro-environmental and ecological performance standard which were recently gaining force would be required through a continuous monitoring for the construction samples afterwards.

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.

Structure Structural Durability Analysis on Bike Carrier Basket (자전거 짐받이에 대한 구조적 내구성 해석)

  • Cho, Jaeung;Han, Moonsik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • This study investigates structural durability through the analyses of stress, fatigue life and vibration damage at bike carrier basket. As model 2 has less stress and deformation than model 1 on static structural analysis, model 2 becomes more durable than model 1. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. The amplitude deformations become highest at maximum response frequency of 2400Hz in cases of models 1 and 2. As the values of maximum equivalent stresses become within the allowable material stresses at two holes at the upper parts on models 1 and 2, these models become safe. The structural result of this study can be effectively utilized with the design of bike carrier basket by investigating prevention and durability against fatigue or vibration damage.

Studies on the Dyeing of Hanji by Natural Dye-stuffs(II) -With a focus on the Onion-peelings- (천연염료를 이용한 한지염색에 관한 연구(II) -양파껍질을 중심으로-)

  • Jeon, Chul
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.48-53
    • /
    • 2003
  • The objective of this study was to find in what color Korean handmade paper(Hanji) is dyed when it is dyed with a pigment extracted from waste onion peelings using different kinds of mordant, and how the paper is discolored and variety of strength under the condition of accelerated aging test. The results of this experiment are as follows. 1. Korean handmade paper was dyed in different colors according to the kinds of mordant. Mainly it was dyed in orange-brown, and sometimes in gold or khaki. 2. Korean handmade paper dyed was not discolored much, which suggests that the pigment is strong under the condition of aging. 3. As for durability, Korean handmade paper dyed in gold was strongest. Korean handmade paper, to which aluminum sulfate, iron sulfate or sodium dichromate was applied as mordant, had poor durability. Thus, these were not suitable as mordant.

Study on the durability assessment based on CAE analysis (CAE 해석 기반 내구도 평가 방법에 대한 연구)

  • 주병현;남기원;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.844-848
    • /
    • 2004
  • We evaluate the durability of vehicle chassis component under dynamic loadings. Since the fatigue analysis of vehicle component is based on the dynamic load history it must be done by dynamic analysis. But in case the vehicle component has natural frequencies much larger than reversing frequencies of load history, we can get small analysis errors by applying quasi-static analysis. So it is inefficient that we apply to the dynamic analysis for all the vehicle components. In this research, we discuss the quasi-static analysis method which is appropriate for the fatigue analysis. And in case we can only perform the fatigue analysis based on dynamic analysis, we introduce more efficient method in the analysis time and hard disk storage.

  • PDF

Structural Durability Analysis of Tie Rod (타이로드의 구조적 내구성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.68-75
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the tie rod configuration. The maximum displacement amplitude is happened at 156Hz by harmonic vibration analysis, this tie rod model can be broken as the weakest state. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sine wave' becomes most stable. In case of 'Sine wave' with the average stress of 0MPa and the amplitude stress of 570MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 140 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on tie rod by investigating prevention and durability against its damage.

Freezing and Thawing Properties of High Strength Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 고강도 콘크리트의 동결융해 특성)

  • Sung , Chan-Yong;Im , Sang-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.59-66
    • /
    • 2004
  • This study was performed to evaluate the freezing and thawing properties of the high strength concrete using recycled coarse aggregate. The recycled coarse aggregate replaced natural crushed aggregate by 0%, 25%, 50%, 75% and 100%. The compressive strength of the concrete using recycled coarse aggregate showed more than 300 kgf/$cm^2$ at the curing age 28 days. The mass loss ratio by freezing and thawing was less than 1% at all mix type. The relative dynamic modulus of elasticity was decreased with increasing the freezing and thawing cycles. Also, the durability factor by the freezing and thawing was decreased with increasing the content of recycled coarse aggregate. But, the recycled concrete except 100% recycled coarse aggregate showed 60 or more durability factor in the freezing and thawing 300 cycles. Accordingly, these recycled coarse aggregate can be used for high strength concrete.

Structural Strength Analysis of ATV Knuckle (ATV 너클의 구조강도 해석)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-144
    • /
    • 2013
  • This study analyzes structural analysis with fatigue and natural frequency on ATV knuckle. The maximum equivalent stresses are happened at the end of knuckle in case of model 1, 2 and 3. As these stresses are below the allowable stress, these models can be stable structurally. The fatigue damage possibility at model 1 becomes more than model 2 and 3. Model 2 or 3 has more durability than model 1 at fatigue. As the resonances are happened at the frequency more than 2000 Hz in case of model 1, 2 and 3, there is no resonance possibilities at real driving. Prevention against damage and durability prediction on automotive chassis parts can be effectively improved by applying this study result on knuckle and improving structural strength.