• Title/Summary/Keyword: natural convection.

Search Result 852, Processing Time 0.024 seconds

Experimental Study on Rayleigh-Benard-Marangoni Natural Convection using IR Camera (열화상카메라를 이용한 Rayleigh-Benard-Marangoni 자연대류 실험 연구)

  • Kim, Jeongbae
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Rayleigh-Benard-Marangoni (RBM) convection have been artificially made for application of various engineering fields. For a relatively larger circular container, natural convection experiments were carried out to reveal and show the flow characteristics with engine oil (SAE30) using IR camera. IR camera has captured the temperature distribution on the free surface. From these experiments, it was confirmed that it was possible to quantitatively analyze the occurrence characteristics of RBM flow clearly from the thermal images taken with IR camera. As the aspect ratio increased, both the number of internal and external cavities increased. And found that the criteria of RBM flow generation proposed through previous experiments performed for small-sized containers are also very effective with the results on larger circular container.

Study on Temperature and Vibration of BLDC Motor (BLDC 모터의 온도 및 진동 특성 연구)

  • Ye, Jung-Woo;Son, Mun-Gyu;Choe, Myoung-Hwan;Kim, Dae-Hwa;Cho, Yeon-Su;Lee, Hyun-Seok;Shim, Jae-Sool
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.43-51
    • /
    • 2014
  • In this paper, transient temperature and vibration characteristics of a brushless DC (BLD(c) motor are studied for external load (165W~495W) and rotational speed (2000 rpm~4000 rpm). For experiment, a simple measurement system is developed to allow a change in load and speed for measuring transient temperature and vibration simultaneously. Temperature and vibration were also measured under the conditions of natural convection and forced convection. Vibrations in the directions of x-axis (#Ch1), y -axis (#Ch2) and z -axis (#Ch3) were obtained by three accelerometers and temperature was obtained by a thermo-couple with respect to time until the motor is steady. Experimental results show that the amplitude of vibration is higher in the order of z-axis (#Ch3), x -axis (#Ch1) and y-axis (#Ch2) and the amplitude of vibration at the forced convection conditions is 10.6% to 17.8% lower than that of vibration at the natural convection. However, the ratio of the vibration value is similar on average regardless of external convection condition.

An Analysis of Thermal Convection in Agricultural-Products Storge System (농산물 저장 시설에서의 열대류 현상의 해석)

  • Kim, Min-Chan;Hyeon, Myeong-Taek;Go, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 1997
  • Natural convection in agricultural-products storage system was analysed theoretically, The storage system was modelled by Internally heated fluid saturated porous layer. Darcy's law was used to explain characteristics of fluid motion. Stability equations were obtained under the linear stability theory and transfer characteristics were modelled by the shape assumption. Based on the modelling of transfer characteristics, heat trasnfer correlations were derived theoretically.

  • PDF

Heat Transfer with Phase Change between Two Isothermal Horizontal Plates (두 등온 수평 평판 사이의 상변화 열전달)

  • Suh, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.323-331
    • /
    • 1992
  • A two-dimensional Benard-convection system with a phase-change material inside has been analysed. The main purpose of the present study is to clarify the basic reason of the hysteresis found by the previous investigators. The interface between the solid and the liquid is assumed to be planar. The analysis was performed with heat transfer rates under the steady state on the interface. It was found that the hysteresis occurs due to the abrupt increase in the heat transfer rate at the onset of natural convection in the classical Benard-convection system. The spectral method was applied to obtain the steady solution of the natural convection for the specific material and to confirm the hysteresis phenomenon.

  • PDF

Mixed Convection in a Horizontal Annulus with a Rotating Cylinder (하나의 실린더가 회전하는 수평 환형 공간에서의 혼합 대류)

  • Yoo Joo-Sik;Ha Dae-Hong
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • Mixed convection in a horizontal annulus is considered, and the effect of a forced flow on the natural convective flow is investigated. The inner cylinder is hotter than the outer cylinder, and the outer cylinder is rotating with constant angular velocity with its axis at the center of the annulus. The unsteady streamfunction-vorticity equation is solved with a finite difference method. For the fluid with Pr=0.7, there appear flows with two eddies, one eddy, or no eddy according the Rayleigh and Reynolds numbers. The rotation of the outer cylinder reduces the heat transfer rate at the wall of the annulus. The oscillatory multicellular flow of a low Prandtl number fluid with Pr=0.01 can be effectively suppressed by the forced flow.

  • PDF

Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder (회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류)

  • Yu, Ju-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

The natural convection in a three dimensional enclosure using color capturing technique and computation (색상 포착 기법과 수치계산을 이용한 3차원 밀폐 공간내의 자연대류 연구)

  • Lee, Gi-Baek;Kim, Tae-Yeong;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1595-1607
    • /
    • 1997
  • The natural convection of a horizontal layer heated from below in a three-dimensional rectangular enclosure was dealt with both numerically and experimentally. The aspect ratios are 1:2:3.5 and Boussinesq fluid is water with the Prandtl number of 5.0. This experimental study showed how to measure the variation of temperature field in a 3-D rectangular enclosure with small aspect ratios by using TLC(Thermochromic Liquid Crystal) and color capturing technique. The experimental temperature field had periodic characteristics of 75 sec at Ra=2.37*10$^{5}$ . But the numerical convection flow had periodic characteristics of 79 sec at the same Rayleigh number. In three dimensional computation it was found that the convection roll structure bifurcated from four rolls to two rolls as the Rayleigh number is increased.

Vertical arrangement of coils for efficient cargo tank heating

  • Magazinovic, Gojko
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.662-670
    • /
    • 2019
  • Tanker cargo tanks are equipped with the means of raising and maintaining the cargo discharge temperature to a suitable level. In this paper, a new heating coil design is proposed and analyzed. Contrary to conventional designs, wherein the heating coils are evenly distributed over the tank bottom, the proposed design arranges the heating coils in the central part of the tank bottom, in a vertical direction. Due to the intensive cargo circulation generated, a forced convection is superimposed on a buoyancy-driven natural convection, providing a more efficient mixed convection heat transfer mechanism. Numerical simulations performed by using a finite volume method show that in the case of 7-bar steam Bunker C heavy fuel oil heating, a five-hour circulation phase average heat transfer coefficient equals 199.2 W/m2K. This result might be taken as an impetus for the more thorough experimental examination.

A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm (PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구)

  • Choi, Y.G.;Chung, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

ANALYSIS OF RAYLEIGH-BENARD NATURAL CONVECTION (Rayleigh-Benard 자연대류 유동 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.62-68
    • /
    • 2008
  • This paper reports briefly on the computational results of a turbulent Rayleigh-Benard convection with the elliptic-blending second-moment closure (EBM). The primary emphasis of the study is placed on an investigation of accuracy and numerical stability of the elliptic-blending second-moment closure for the turbulent Rayleigh-Benard convection. The turbulent heat fluxes in this study are treated by the algebraic flux model with the temperature variance and molecular dissipation rate of turbulent heat flux. The model is applied to the prediction of the turbulent Rayleigh-Benard convection for Rayleigh numbers ranging from Ra=$2{\times}10^6$ to Ra=$10^9$ and the computed results are compared with the previous experimental correlations, T-RANS and LES results. The predicted cell-averaged Nusselt number follows the correlation by Peng et al.(2006) (Nu=$0.162Ra^{0.286}$) in the 'soft' convective turbulence region ($2{\times}10^6{\leq}Ra{\leq}4{\times}10^7$) and it follows the experimental correlation by Niemela et al. (2000) (N=$0.124Ra^{0.309}$) in the 'hard' convective turbulence region ($10^8{\leq}Ra{\leq}10^9$) within 5% accuracy. This results show that the elliptic-blending second-moment closure with an algebraic flux model predicts very accurately the Rayleigh-Benard convection.