• Title/Summary/Keyword: national water management

Search Result 3,322, Processing Time 0.044 seconds

Characterization of Increases in Volumetric Water Content in Soil Slopes to Predict the Risk of Shallow Failure (토사비탈면 표층붕괴 위험 예측을 위한 체적함수비 증가 특성 연구)

  • Suk, Jae-Wook;Kang, Hyo-Sub;Choi, Sun-Gyu;Jeong, Hyang-Seon;Song, Hyo-Sung
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.485-496
    • /
    • 2020
  • The characteristics of volumetric water content changes in soil slopes were studied here in an effort to identify the signs of heavy rain causing shallow slope failure. Volumetric water contents in cases with and without shallow failure were measured in flume and test-bed experiments. Measurement data from 282 experiments of both types revealed that the volumetric water content gradient in shallow failure events ranged from 0.072 to 0.309. In non-failure cases, the range was 0.01~0.32. Therefore, this one specific value cannot predict shallow slope failure. However, as the volumetric water content gradient increased, there was a clear tendency to shallow failure. By using this trend, criteria for four warning levels are suggested.

Characterization on the Variation of Streamflow at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin - (수질오염총량관리 단위유역의 유량변화 특성분석 - 금강수계를 대상으로 -)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.914-925
    • /
    • 2011
  • The variation of streamflow is regarded as one of the most influential factors on the fluctuation of water quality in the stream. The characteristics of the variation should be taken into account in the plans for the management of Total Maximum Daily Loads (TMDLs). This study analysed and characterized spatial distribution and temporal variation of streamflow at each unit watershed in Guem-river basin. For the analysis of the distribution of streamflow, the type and the extent of the distribution were investigated for the unit watershed. For the analysis of the variation, short and long term changes of streamflow were examined. The result showed that most of the distributions were not log-normalized and the extent of variation tends to be greater at the unit watershed placed on the tributaries in the basin. A kind of margin could be granted to the unit watershed involving high variations so as to establish the water quality goal and load allotment more reasonably and effectively in view of whole waterbody.

Application of PCSWMM for the Analysis of Water Quantity and Quality Considering CSOs (CSOs를 고려한 도시유역의 수량 및 수질 분석을 위한 PCSWMM 모형의 적용)

  • Hong, Won-Pyo;Chung, Eun-Sung;Lee, Joon-Seok;Kim, Kyung-Tae;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.26-36
    • /
    • 2009
  • Combined sewer system (CSS) has been built in the most urban areas across the nation. During dry weather conditions, CSS works fine. But during heavy rain storms, combined sewage frequently overflows into the stream. This study simulated the hydrologic cycle and pollutant loads (BOD, SS, TN and TP) in the Mokgamcheon watershed considering combined sewer overflows (CSOs). PC storm water management model (PCSWMM) was used for continuous simulation and CSOs are considered using the flow divider. Sensitivity analysis, calibration and verification for water quantity and quality are carried out. To verify CSOs, field measurements of CSOs are compared with simulated results. As a result, 41.3% of precipitation flows into the stream directly and 1.1% of water supply flows into stream as CSOs. 6.5% of BOD total loads, 12.0% of SS, 13.6% of TP, and 29.2% of TN are from CSOs. This result will be effective to the integrated watershed management for sustainability.

A Study on the Participatory Irrigation Management under Public Irrigation Management System (공적(公的)관리에서의 참여형 관개관리(PIM) 모델)

  • Lee, Sung-Hee;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.13-17
    • /
    • 2011
  • There was a transition from participatory irrigation management (PIM) to public irrigation management (PubIM) in Korea when Korea Rural corporation and Community (KRC) merged with Farm Land Improvement Associations (FLIAs), which had managed 60 % of irrigation areas. While making a number of achievements, some problems occurred in the public irrigation management, such as lack of farmers' participation, increased amount of water usage, and elevating operating costs. Accordingly, this paper suggested ways to increase efficiency in water usage and reduce operating costs under the public management through the motive power of farmers participation. First, WUGs replaced the discarded water management committee should be reorganized to revive the concept of PIM in the form of autonomously reinforced one and the roles and functions of WUGs and the board of representatives should be strengthened. The member of new type of WUGs should participate in the national and regional water management committees as a stakeholder of irrigation water user. And also new type of WUGs initiates not only the management of irrigation water but also the management of irrigation water quality and non-point source pollution in the watersheds. Those additional activities of WUGs should be properly compensated. Second, subsidies (direct payments) should be provided to faithful farmers as an incentive for their labor supply. Third, water fees could be charged to large scale agriculture companies. Fourth, professional managers could be hired, management targets would be adjusted, and incentives should be offered. These efforts are expected to improve the irrigation management by encouraging farmers' participation under public system.

Development of Alternative Indicator for Arsenic Management in River Basin and Drinking Water Treatment (하천수 및 정수공정에서의 비소관리를 위한 대체인자 개발)

  • Kang, Meea;Kim, Kwang Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.659-663
    • /
    • 2005
  • Many studies have been conducted to develop new technologies for arsenic removal and to reveal the levels of arsenic and other chemicals in rivers, lakes and ground waters. However, there are few studies dealing with such compounds in the total water system of the city, and the way of management of these compounds in the water system. Because the occurrence of these hazardous compounds, which are geological origins, is almost impossible to control, it is very important to manage these compounds in the water system. In this research, it was revealed that the risk of arsenic in the water treatment system of S city in Japan. As a results, the parameters such as Q in river and E260 in drinking water treatment plant is proposed as a new indicator with simple and rapid method for controling arsenic level.

Application of Korean Water Quality Index for the Assessment of River Water Quality in the Basin of Daecheong Lake (대청호 유역의 수질평가를 위한 종합수질지수의 적용)

  • Chung, Se Woong;Park, Jae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.470-476
    • /
    • 2005
  • The Korean Water Quality Index (K-WQI) was applied to the rivers located in the watershed of Daecheong Lake to assess the status of river water quality, and propose potential target constituents for better water quality management in the watershed. The estimated K-WQI value for each river was varied from 70 to 90, and Youngdongcheon showed the worst score while Mujunamdeachen showed the best score. The total nitrogen (TN) and total coliform bacteria were identified as the most significant constituents that degrade the K-WQI values in the rivers. The correlation coefficients (r) were determined between K-WQI and the delivered specific load ($kg/km^2/yr$) of BOD, TN, and TP to justify potential target constituents that have a great influence on the improvement of K-WQI values. The results showed that TN (r=-0.86) and TP (r=-0.85) have a strong negative relationships with K-WQI, but BOD have almost no effect. This implies that BOD, the surrogate parameter for organic pollutants, is no more a feasible water quality variable for the water quality management in the study site.

Digital Twin based Household Water Consumption Forecasting using Agent Based Modeling

  • Sultan Alamri;Muhammad Saad Qaisar Alvi;Imran Usman;Adnan Idris
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • The continuous increase in urban population due to migration of mases from rural areas to big cities has set urban water supply under serious stress. Urban water resources face scarcity of available water quantity, which ultimately effects the water supply. It is high time to address this challenging problem by taking appropriate measures for the improvement of water utility services linked with better understanding of demand side management (DSM), which leads to an effective state of water supply governance. We propose a dynamic framework for preventive DSM that results in optimization of water resource management. This paper uses Agent Based Modeling (ABM) with Digital Twin (DT) to model water consumption behavior of a population and consequently forecast water demand. DT creates a digital clone of the system using physical model, sensors, and data analytics to integrate multi-physical quantities. By doing so, the proposed model replicates the physical settings to perform the remote monitoring and controlling jobs on the digital format, whilst offering support in decision making to the relevant authorities.

Application of the Load Duration Curve (LDC) to Evaluate the Rate of Achievement of Target Water Quality in the Youngsan · Tamjin River Watersheds (부하지속곡선(LDC)을 이용한 영산강 · 탐진강수계 오염총량관리 목표수질 평가방법 적용 방안)

  • Cheong, Eunjeong;Kim, Hongtae;Kim, Yongseok;Shin, Dongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • Total Maximum Daily Loads (TMDLs) System has been used to improve water quality in the Youngsan·Tamjin river basin since 2004. The Basic Policy of TMDLs sets up the standard flow based on the average dry condition or mid-range flow during the last 10 years. However, Target Water Quality (TWQ) assessment on TMDLs has been used to evaluate water quality through eight-day intervals over 36 times a year. The results for allocation evaluation and target water quality evaluation were different from each other in the same unit watershed during the first period. In order to improve the evaluation method, researchers applied Load Duration Curve (LDC) to evaluate water quality in nine unit watersheds of the Youngsan·Tamjin river basin. The results showed that achievement rates of TWQ assessment with the current method and LDC were 67~100% and 78~100%, respectively. Approximately 11% of the achievement rates with use of LDC were higher than those with use of the current method. In conclusion, it is necessary to review the application of the LDC method in all Four Major River Watersheds.

Assessment of Seasonal Variation in Water Quality in Daedong Lake (대동호의 시기별 및 계절별 수질변화 평가)

  • Yun, Jin-Ju;Kang, Se-Won;Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Hyun-Woo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.197-203
    • /
    • 2020
  • BACKGROUND: Most lakes have increased concerns about water pollution due to the inflow of non-point sources caused by human activities. Therefore, the lake water quality survey was conducted in order to propose effective plans for water quality management by analyzing the characteristics of lakes and the change of water quality. METHODS AND RESULTS: In order to investigate the physicochemical water quality in Daedong lake, water quality analysis was undertaken from July 2018 to June 2019. Water temperature was ranged from 7.8 to 34.3℃ and pH varied from 6.9 to 10.2. The concentration of Dissolved oxygen, Suspended solid, Biochemical Oxygen Demand (BOD), and Chemical Oxygen Demand (COD) were 5.6 ~ 17.2 mg/L, 2.4 ~ 35.3 mg/L, and 4.5 ~ 15.1 mg/L, and 0.9 ~ 2.8 mg/L, respectively. The Total Nitrogen (T-N) concentration ranged from 0.974 ~ 2.126 mg/L, and Total Phosphorus (T-P) concentration ranged from 0.014 ~ 0.057 mg/L. The Chlorophyll-a (Chl-a) ranged from 2.7 ~ 37.9 mg/㎥. Through Carlson TSIm assessment using T-P and Chl-a results, evaluating trophic state, Daedong lake was evaluated as mesotrophic. CONCLUSION: Water pollution management plan needs such as nutrient removal technology and nonpoint source management for prevention of eutrophication in Daedong lake.