• 제목/요약/키워드: national water management

검색결과 3,322건 처리시간 0.035초

비모수 경향분석법 적용을 통한 금강수계 총량관리 단위유역의 수질변화 연구 (A Study on the Water Quality Changes of TMDL Unit Watershed in Guem River Basin Using a Nonparametric Trend Analysis)

  • 김은정;김용석;류덕희;류지철;박배경
    • 한국물환경학회지
    • /
    • 제30권2호
    • /
    • pp.148-158
    • /
    • 2014
  • In order to assess the effect of TMDLs management and improve that in the future, it is necessary to analyze long-term changes in water quality during management period. Therefore, long term trend analysis of BOD was performed on thirty monitoring stations in Geum River TMDL unit watersheds. Nonparametric trend analysis method was used for analysis as the water quality data are generally not in normal distribution. The monthly median values of BOD during 2004~2010 were analyzed by Seasonal Mann-Kendall test and LOWESS(LOcally WEighted Scatter plot Smoother). And the effect of Total Maximum Daily Loads(TMDLs) management on water quality changes at each unit watershed was analyzed with the result of trend analysis. The Seasonal Mann-Kendall test results showed that BOD concentrations had the downward trend at 10 unit watersheds, upward trend at 4 unit watersheds and no significant trend at 16 unit watersheds. And the LOWESS analysis showed that BOD concentration began to decrease after mid-2009 at almost all of unit watersheds having no trend in implementation plan watershed. It was estimated that TMDLs improved water quality in Geum River water system and the improvement of water quality was made mainly in implementation plan unit watershed and tributaries.

하수처리장 개선이 마산만 수질에 미치는 영향분석 (Analysis of Water Quality caused by Improvement of Sewage Treatment Plant in Masan Bay)

  • 오현택;구준호;박성은;최윤선;정래홍;최우정;이원찬;박종수
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.777-783
    • /
    • 2005
  • For the sustainable management of marine ecosystem in Masan Bay, we have to assess the carrying capacity and standard of target water quality. In this research, we assume that all pollutants loads are treated in Dukdong sewage treatment plant, then we simulate the physical-biological model for prediction water quality for the achievement of standard water quality. In 2001 year, for the achievement of COD 2.5 mg/L, we need to reduce COD $90\%$, nitrogen $30\%$, phosphate $90\%$ than that of the present value, According to these results, the water quality of sewage treatment plant is required to treat COD 13.5 mg/L, nitrogen 33.3 mg/L, phosphate 6,0 mg/L. If the sewage treatment plant will be expanded much larger in 2011, it will need to be treated in COD 6.6 mg/L, nitrogen 2.5 mg/L, phosphate 5 mg/L for the achievement of water quality standard in COD 2.5 mg/L.

관개지구 물관리기법에 따른 농업용 저수지 공급량 평가 (Impact of Water Management Techniques on Agricultural Reservoir Water Supply)

  • 류정훈;송정헌;강석만;장중석;강문성
    • 한국농공학회논문집
    • /
    • 제60권2호
    • /
    • pp.121-132
    • /
    • 2018
  • Along with climate change, it is reported that the extreme climate events such as severe drought could cause difficulties of agricultural water supply. To minimize such damages, it is necessary to secure the agricultural water resources by using or saving the amount of irrigation water efficiently. The objectives of this study were to develop paddy water management scenarios and to evaluate their effectiveness on water saving. Three water management scenarios (a) deep irrigation with ponding depth of 20~80 mm (control, CT), (b) no/intermittent irrigation until paddy cracks (water management A, WM-A), and (c) intermittent irrigation with ponding depth under 20 mm (water management B, WM-B) were developed. Water saving effects were analyzed using monitored data from experimental paddy fields, and agricultural water supply was analyzed on a reservoir-scale using MASA model. The observed irrigation amounts were reduced by 21 % and 17 % for WM-A and WM-B compared to CT, respectively, and mainly occurred by the increase of effective rainfall. The simulation results showed that water management scenarios could reduce irrigation by 21~51 % and total inflow by 10~24 % compared to CT. The long-term simulated water level change of agricultural reservoir resulted in the decrease of dead level occurrence for WM-A and WM-B. The study results showed that WT-A and WT-B have more benefit than CT in the aspect of agricultural reservoir water supply.

우리나라 물관리 체제의 혁신 (Restructuring of Water Governance Institution in Korea)

  • 김승
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.679-685
    • /
    • 2005
  • In Korea, water management policy had been successfully conducted until late 1980's. During the period, fundamental needs of human-being, such as requirements of drinking and irrigation waters and flood protection for living, had been satisfied. However, most of recent water problems occurred after the late 1980's such as water quality management and new water resources development, have been unresolved and accumulated. Because, our water governing institutions have become ineffective as water management issue has been changed gradually from fundamental human needs such as water supply and/or flood protection to complex/integrated issues, for example, river restoration. To solve those water problems accumulated, we needs a new paradigm of water governing institution such as setting up national water management committee and river basin committee, in order to coordinate water-related ministries' policies and establish national water resources planning in an integrated format.

  • PDF

리기다소나무 임분에서 산림관리작업이 토양의 물리성 및 산림의 수질정화기능에 미치는 영향 (Influence of Forest Practices on Soil Physical Properties and Facility of Purifying Water Quality in Pinus rigida Stands)

  • 박재현
    • 한국환경복원기술학회지
    • /
    • 제10권2호
    • /
    • pp.61-70
    • /
    • 2007
  • This study aims to clarify the effect of forest management practices(thinning and pruning) on soil physical properties and water quality to get the fundamental information on the facility of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study site which consists of Pinus rigida in Jinju National University Experimental Forest for 4 years from Mar. 1, 2002 to Nov. 30, 2006. Averaged tree height of the management site increased by 1.6m, compared to the value of the non-management site in Pinus rigida. Increment of averaged D. B. H. at the management site showed 4.2cm more in Pinus rigida compared with that at non-management sites. Mesopore ratios (pF2.7) and total porosities of A layer soil at the management site increased more than those at the non-management sites in both stands. Otherwise, soil bulk density resulted in being reversely. Water qualities of throughfall, stemflow and buffered soil water were influenced more positively by the management practice. The average electrical conductivity of stream water was $32.9{\mu}S/cm$ within the range of non-polluted stream water.

수질개선을 위한 축산계 오염물질 관리방안에 대한 고찰 (Systematic Review on Management of Livestock wastes for Improving Water Quality)

  • 안기홍;유홍덕;김용석
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.576-582
    • /
    • 2015
  • In recently, the Korea government is concerning on non-point source pollution management to improve water quality. The objective of this paper is to investigate the improvement measurement for management of livestock wastes. As a result, we find that the National Pollution Source Survey is necessary to establish the unified database system with the Korea Statistics(KOSAT) in order to minimize the difference between relevant data. The investigation for environmental impact of livestock manure should be supported the designation of control areas and establishment of the technical guidelines including target material, monitoring site, standard method, etc. In addition, it should be followed by appropriate nutrient recycling and proper fertilizer usage based on social consultation and cost-benefit analysis.

SWMM 모형을 활용한 평야부 관개효율 및 용수공급 취약성 평가 (Assessment of Irrigation Efficiency and Water Supply Vulnerability Using SWMM)

  • 신지현;남원호;방나경;김한중;안현욱;이광야
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.73-83
    • /
    • 2020
  • Agricultural drought is a natural phenomenon that is difficult to observe and quantitatively express, and agricultural water use is high and usage patterns are diverse, so even if there is a lack of rainfall. The frequency and severity of agricultural drought are increased during the irrigation period where the demand for agricultural water is generated, and reasonable and efficient management of agricultural water for stable water supply is required. As one method to solve the water shortage of agricultural water in an unstructured method, it is necessary to analyze the appropriate supply amount and supply method through simulation from the intake works to the canals organization and paddy field. In this study, irrigation efficiency was analyzed for irrigation systems from April to September over the past three years from the Musu Reservoir located in Jincheon-gun, Chungcheongbuk-do and Pungjeon Reservoir located in Seosan-si, Chungcheongnam-do. SWMM (Storm Water Management Model) was used to collect agricultural water, and irrigation efficiency analysis was conducted using adequacy indicators, and water supply vulnerability. The results of the agricultural water distribution simulation, irrigation efficiency and water supply vulnerability assessment are thought to help the overall understanding of the agricultural water supply and the efficient water management through preliminary analysis of the methods of agricultural water supply in case of drought events.

유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가 (Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model)

  • 김석현;황순호;김시내;이현지;전상민;강문성
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.

국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향 (Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy)

  • 정세웅;김성진;박형석;서동일
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

수자원시설물의 유지관리 체계 선진화를 위한 입법 및 정책과제 (Legislative and policy issues related to the advancement of the maintenance system of water resource facilities)

  • 이기하;연민호;이대업;김성원;김진수
    • 한국수자원학회논문집
    • /
    • 제53권spc1호
    • /
    • pp.773-784
    • /
    • 2020
  • 본 연구에서는 수자원시설물의 노후화 정도와 관리현황 등을 조사·분석함으로써, 수자원시설물의 유지관리 체계 선진화를 위한 입법 및 정책과제를 제시하였다. 수자원시설물의 노후화를 분석하기 위해 한국시설안전공단에서 운영하는 시설물통합정보관리시스템의 자료를 수집하여 분석에 활용하였다. 시설물별, 종별, 시도별, 등급별로 구축된 안전등급 자료를 이용하여 위험시설물 비율과 고령화율을 산정하여 수자원시설물의 현황을 분석하고 수자원시설 관련 지침 및 매뉴얼을 조사하였다. 이를 통해 1) 수자원시설물 범위의 재조정 및 지침·매뉴얼의 보완, 2) 재해여건 변화를 고려한 유지관리 체계의 구축, 3) 시설물통합정보시스템의 개선 및 표준연계서비스 활성화, 4) 시설물의 자산관리체계 구축의 네 가지 입법 및 정책과제를 제시하였다.