• Title/Summary/Keyword: national long-term ecological monitoring station

Search Result 1, Processing Time 0.016 seconds

Initial Preliminary Studies in National Long-Term Ecological Research (LTER) Stations of Daechung Reservoir

  • Lee, Sang-Jae;Lee, Jae-Hoon;Kim, Jong-Im;La, Geung-Hwan;Yoem, Min-Ae;Shin, Woong-Ghi;Kim, Hyun-Woo;Jang, Min-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.476-486
    • /
    • 2009
  • Major objective of our study was to introduce initial researches of national long-term ecological monitoring studies on Daechung Reservoir, as one of the representative lentic reservoir ecosystems in Korea. For the long-term ecological research (LTER), we conducted preliminary field monitoring during 2008~2009 and analyzed biological parameters such as phytoplankton, zooplankton, and freshwater fish along with chemical water quality and empirical model analysis. According to phytoplankton surveys, major taxa have varied largely depending on seasons and sites sampled. Overall phytoplankton data showed that cyanophyta dominated in the summer period and diatoms dominated in the winter. In zooplankton analysis, 25 species including 20 rotifers, 3 cladocerans and 2 copepods were collected during the survey. The relative abundance of rotifers (86.5%) was always greater than that of cladocerans (6.3%) or copepods (5.1%). There were distinct spatial and inter-annual changes in the abundance of zooplankton in the reservoir, displaying similar patterns in three sites with the exception of S3 during the study. According to fish surveys, 8 families and 39 species were observed during 2008~2009. The most dominant fish was an exotic species of Lepomis macrochirus (23%), indicating an severe influence of exotic species to the ecosystem. TP averaged $17.9\;{\mu}g\;L^{-1}$ ($6{\sim}80\;{\mu}g\;L^{-1}$), which was judged as a mesotrophy, and showed a distinct longitudinal gradients. TN averaged $1.585\;{\mu}g\;L^{-1}$ during the study and judged as hypereutrophic condition. Unlike TP, TN didn't show any large seasonal and spatial variations. Under the circumstances, nitrogen limitation may not happen in this system, indicating that nitrogen control is not effective in the watershed managements. These data generated in the LTER station will provide key information on long-term biological and water quality changes in relation to global warming and some clues for efficient reservoir ecosystem managements.